Olivier Boucher

Learn More
  • Co-Ordinating Lead, Author V Ramaswamy, +42 authors J Srinivasan
  • 2001
Contributing Authors R. Betts, R. Charlson, C. Chuang, J.S. Daniel, A. Del Genio, R. van Dorland, J. Feichter, J. Fuglestvedt, P.M. de F. Forster, S.J. Ghan, A. Jones, J.T. Kiehl, D. Koch, C. Land, J. Lean, U. Lohmann, K. Minschwaner, J.E. Penner, D.L. Roberts, H. Rodhe, G.J. Roelofs, L.D. Rotstayn, T.L. Schneider, U. Schumann, S.E. Schwartz, M.D.(More)
Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols(More)
The aerosol-climate model ECHAM5-HAM P. Stier, J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, and O. Boucher Max Planck Institute for Meteorology, Hamburg, Germany Institute for the Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy Max Planck(More)
Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles. Although the models(More)
Inventories for global aerosol and aerosol precursor emissions, and auxiliary information, have been collected, assessed and prepared for the year 2000 (present-day conditions) and for the year 1750 (pre-industrial conditions). These global datasets establish a reference for input in global modeling, when simulating the aerosol impact 5 on climate with(More)
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation(More)
Continental runoff has increased through the twentieth century despite more intensive human water consumption. Possible reasons for the increase include: climate change and variability, deforestation, solar dimming, and direct atmospheric carbon dioxide (CO2) effects on plant transpiration. All of these mechanisms have the potential to affect precipitation(More)
[1] We estimate aerosol absorption over the clear-sky oceans using aerosol geophysical products from POLDER-1 space measurements and absorption properties from ground-based AERONET measurements. Our best estimate is 2.5 Wm 2 averaged over the 8-month lifetime of POLDER-1. Low and high absorption estimates are 2.2 and 3.1 Wm 2 based on the variability in(More)
Plant photosynthesis tends to increase with irradiance. However, recent theoretical and observational studies have demonstrated that photosynthesis is also more efficient under diffuse light conditions. Changes in cloud cover or atmospheric aerosol loadings, arising from either volcanic or anthropogenic emissions, alter both the total photosynthetically(More)
In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface.(More)