Olivier Billoint

Learn More
Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing(More)
A 64 channels CMOS chip dedicated to in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays has been developed. It includes, for each channel, a low noise, variable gain (10, 75 or 750), 0.08 Hz-3 kHz bandwidth measurement path with unity-gain for lower frequencies to allow measurement of the electrochemical potential. A(More)
In order to understand the dynamics of large neural networks, where information is widely distributed over thousands of cells, one of today's challenges is to successfully record the simultaneous activities of as many neurons as possible. This is made possible by using microelectrodes arrays (MEAs) positioned in contact with the neural tissue. Thanks to(More)
In order to understand the dynamics of large neural networks, where information is widely distributed over thousands of cells, one of today's challenges is to successfully monitor the simultaneous activity of as many neurons as possible. This is made possible by using the Micro-Electrode Array (MEA) technology allowing neural cell culture and/or tissue(More)
Une plateforme multicanaux pour l'enregistrement et la stimulation de grands ensembles de neurones Abstract In order to understand the dynamics of large neural networks, where information is widely distributed over thousands of cells, one of today's challenges is to successfully record the simultaneous activities of as many neurons as possible. This is made(More)
Todays' MPSoC applications are requiring a convergence between very high speed and ultra low power. Ultra Wide Voltage Range (UWVR) capability appears as a solution for high energy efficiency with the objective to improve the speed at very low voltage and decrease the power at high speed. Using Fully Depleted Silicon-On-Insulator (FDSOI) devices(More)