Learn More
Blue whales produce intense, stereotypic low frequency calls that are particularly well suited for transmission over long distances. Because these calls vary geographically, they can be used to gain insight into subspecies distribution. In the Southwestern Indian Ocean, acoustic data from a triad of calibrated hydrophones maintained by the International(More)
  • Olivier Adam
  • 2006
While marine mammals emit variant signals (in time and frequency), the Fourier spectrogram appears to be the most widely used spectral estimator. In certain cases, this approach is suboptimal, particularly for odontocete click analysis and when the signal-to-noise ratio varies during the continuous recordings. We introduce the Hilbert Huang transform (HHT)(More)
This paper describes a brainstem auditory evoked potentials (BAEPs) detection method based on supervised pattern recognition. A previously used pattern recognition technique relying on cross-correlation with a template was modified in order to include a priori information allowing detection accuracy. Reference is made to the patient's audiogram and to the(More)
The common use of the bent-horn model of the sperm whale sound generator describes sperm whale clicks as the pulse series {p0, p1, p2, p3,...}. Clicks, however, deviate from this standard when recorded using off-axis hydrophones. The existence of additional pulses within the {p0, p1, p2, p3, ...} series can be explained still using the bent-horn model.(More)
Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one(More)
Following a production-based approach, this paper deals with the acoustic behavior of humpback whales. This approach investigates various physical factors, which are either internal (e.g., physiological mechanisms) or external (e.g., environmental constraints) to the respiratory tractus of the whale, for their implications in sound production. This paper(More)
In this paper, we present a new computerised technique for the automatic construction of the latency intensity curve (LI curve). We take a pattern recognition approach determined by a priori information. We use knowledge gained from the audiogram and from physiological considerations. Therefore, we consider all recordings at different intensities as well as(More)
The study of cetacean vocalizations is usually based on spectrogram analysis. The feature extraction is obtained from 2D methods like the edge detection algorithm. Difficulties appear when signal-to-noise ratios are weak or when more than one vocalization is simultaneously emitted. This is the case for acoustic observations in a natural environment and(More)
Automatic Music Transcription (AMT) consists in automatically estimating the notes in an audio recording, through three attributes: onset time, duration and pitch. Probabilistic Latent Component Analysis (PLCA) has become very popular for this task. PLCA is a spectrogram factorization method, able to model a magnitude spectrogram as a linear combination of(More)