Olivia S. Anderson

Learn More
DNA methylation is the most extensively studied mechanism of epigenetic gene regulation. Increasing evidence indicates that DNA methylation is labile in response to nutritional and environmental influences. Alterations in DNA methylation profiles can lead to changes in gene expression, resulting in diverse phenotypes with the potential for increased disease(More)
The development of adult-onset diseases is influenced by perinatal exposure to altered environmental conditions. One such exposure, bisphenol A (BPA), has been associated with obesity and diabetes, and consequently labeled an obesogen. Using an isogenic murine model, we examined the effects of perinatal exposure through maternal diet to 50 ng (n=20), 50 μg(More)
There is compelling evidence that epigenetic modifications link developmental environmental insults to adult disease susceptibility. Animal studies have associated perinatal bisphenol A (BPA) exposure to altered DNA methylation, but these studies are often limited to candidate gene and global non-loci-specific approaches. By using an epigenome-wide(More)
BACKGROUND Bisphenol A (BPA) is a high production volume chemical with hormone-like properties that has been implicated as a potential carcinogen. Early-life exposure has been linked to increased risk for precancerous lesions in mammary and prostate glands and the uterus, but no prior study has shown a significant association between BPA exposure and cancer(More)
Developmental exposure to bisphenol A (BPA) has been shown to induce changes in DNA methylation in both mouse and human genic regions; however, the response in repetitive elements and transposons has not been explored. Here we present novel methodology to combine genomic DNA enrichment with RepeatMasker analysis on next-generation sequencing data to(More)
New dental accreditation standards emphasize that graduates must be competent in the use of critical thinking (a high cognitive-level skill). Despite this new standard, most written assessments in dental school courses are still based on low cognitive-level questions. The aim of this study was to determine if an exercise that allows students to(More)
The genetic material of every organism exists within the context of regulatory networks that govern gene expression—collectively called the epigenome. Animal models and human birth cohort studies have revealed key developmental periods that are important for epigenetic programming and vulnerable to environmental insults. Thus, epigenetics represent a(More)
Genetic loci displaying environmentally responsive epigenetic marks, termed metastable epialleles, offer a solution to the paradox presented by genetically identical yet phenotypically distinct individuals. The murine viable yellow agouti (A (vy) ) metastable epiallele exhibits stochastic DNA methylation and histone modifications associated with coat color(More)
Developmental exposure to the endocrine-active compound bisphenol A (BPA) has been linked to epigenotoxic and potential carcinogenic effects in rodent liver, prostate, and mammary glands. A dose-dependent increase in hepatic tumors in 10-month mice perinatally exposed to one of three doses of BPA (50 ng, 50 µg, or 50 mg BPA/kg chow) was previously reported.(More)
Animal studies have linked perinatal bisphenol A (BPA) exposure to altered DNA methylation, but little attention is given to analyzing multiple physiologically relevant doses. Utilizing the viable yellow agouti (A(vy)) mouse, we examine the effects of developmental exposure through maternal diet to 50 ng BPA/kg (n = 14 litters), 50 μg BPA/kg (n = 9(More)