Learn More
Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable(More)
A major goal of current clinical research in Huntington's disease (HD) has been to identify preclinical and manifest disease biomarkers, as these may improve both diagnosis and the power for therapeutic trials. Although the underlying biochemical alterations and the mechanisms of neuronal degeneration remain unknown, energy metabolism defects in HD have(More)
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is(More)
There is strong evidence from studies in humans and animal models to suggest the involvement of energy metabolism defects in neurodegenerative diseases. Uridine, a pyrimidine nucleoside, has been suggested to be neuroprotective in neurological disorders by improving bioenergetic effects, increasing ATP levels and enhancing glycolytic energy production. We(More)
Huntington's disease (HD) is an autosomal dominant, progressive, and fatal neurodegenerative disorder caused by an expanded polyglutamine cytosine-adenine-guanine repeat in the gene coding for the protein huntingtin. Despite great progress over the past two decades since the identification of the gene mutation, a direct causative pathway from the HD gene(More)
Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU)(More)
  • 1