Learn More
PURPOSE To characterize the quantitative properties of the optokinetic response (OKR) in zebrafish larvae as a tool to test visual performance in genetically modified larvae. METHODS Horizontal OKR was triggered in 5-day-old zebrafish larvae by stimulation with projected computer-generated gratings of varying contrast, angular velocity, temporal and(More)
To understand the structure and function of large molecular machines, accurate knowledge of their stoichiometry is essential. In this study, we developed an integrated targeted proteomics and super-resolution microscopy approach to determine the absolute stoichiometry of the human nuclear pore complex (NPC), possibly the largest eukaryotic protein complex.(More)
The ability to analyze and understand the mechanisms by which cells process information is a key question of systems biology research. Such mechanisms critically depend on reversible phosphorylation of cellular proteins, a process that is catalyzed by protein kinases and phosphatases. Here, we present PhosphoPep, a database containing more than 10 000(More)
Adaptation to a steady background has a profound effect on both color appearance and discrimination. We determined the temporal characteristics of chromatic adaptation for appearance and discrimination along different color directions. Subjects were adapted to a large uniform background made up of a CRT screen and a 45x64 degrees wall, illuminated by(More)
The generation of mathematical models of biological processes, the simulation of these processes under different conditions, and the comparison and integration of multiple data sets are explicit goals of systems biology that require the knowledge of the absolute quantity of the system's components. To date, systematic estimates of cellular protein(More)
Selected reaction monitoring (SRM) uses sensitive and specific mass spectrometric assays to measure target analytes across multiple samples, but it has not been broadly applied in proteomics owing to the tedious assay development process for each protein. We describe a method based on crude synthetic peptide libraries for the high-throughput development of(More)
Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to(More)
Selected reaction monitoring (SRM) is a targeted mass spectrometric method that is increasingly used in proteomics for the detection and quantification of sets of preselected proteins at high sensitivity, reproducibility and accuracy. Currently, data from SRM measurements are mostly evaluated subjectively by manual inspection on the basis of ad hoc(More)
MOTIVATION During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several(More)
We describe a method to identify cross-linked peptides from complex samples and large protein sequence databases by combining isotopically tagged cross-linkers, chromatographic enrichment, targeted proteomics and a new search engine called xQuest. This software reduces the search space by an upstream candidate-peptide search before the recombination step.(More)