Oliver Peetz

  • Citations Per Year
Learn More
Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical(More)
The integral synaptic vesicle protein SV31 has been shown to bind divalent cations. Here, we demonstrate that SV31 protein synthesized within a cell-free system binds Zn2+ and to a lower extent Ni2+ and Cu2+ ions. Expression with Zn2+ stabilized the protein and increased solubility. SV31 was preferentially monomeric in detergent and revealed specific(More)
Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various(More)
Cotranslational insertion of membrane proteins into defined nanoparticle membranes has been developed as an efficient process to produce highly soluble samples in native-like environments and to study lipid-dependent effects on protein structure and function. Numerous examples of the structural and functional characterization of transporters, ion channels,(More)
  • 1