Oliver P. Love

Learn More
In species where offspring fitness is sex-specifically influenced by maternal reproductive condition, sex allocation theory predicts that poor-quality mothers should invest in the evolutionarily less expensive sex. Despite an accumulation of evidence that mothers can sex-specifically modulate investment in offspring in relation to maternal quality, few(More)
Current research in birds suggests that a conflict should exist during reproduction for the role of the glucocorticoid corticosterone (CORT). While elevated levels have been correlated with the increased energetic demand of raising offspring, elevated CORT levels have traditionally been implicated in reproductive abandonment. We examined the relationship(More)
The question of why maternal stress influences offspring phenotype is of significant interest to evolutionary physiologists. Although embryonic exposure to maternally derived glucocorticoids (i.e., corticosterone) generally reduces offspring quality, effects may adaptively match maternal quality with offspring demand. We present results from an interannual(More)
Optimal functioning of the hypothalamo-pituitary-adrenal (HPA) axis is paramount to maximizing fitness in vertebrates. Research in laboratory mammals has suggested that maternally-induced stress can cause significant variation in the responsiveness of an offspring's HPA axis involving both pre- and post-natal developmental mechanisms. However, very little(More)
Within studies of acute stress physiology an increase in glucocorticoid secretion is thought to be the primary mediator of tissue response to stress. Corticosteroid-binding globulin may regulate tissue availability of steroids, but has not been considered a dynamic component of the acute stress response. Here, we examined CBG level over the common 60-minute(More)
Ecological and medical researchers are investing great effort to determine the role of Maternally-Derived Stress (MDS) as an inducer of phenotypic plasticity in offspring. Many researchers have interpreted phenotypic responses as unavoidable negative outcomes (e.g., small birth weight, high anxiety); however, a biased underestimate of the adaptive potential(More)
We investigated post-natal development of the adrenocortical stress-response system in captive American kestrels (Falco sparverius) by measurements of baseline and stress-induced levels of corticosterone at ages 10, 16, 22, and 28 days post-hatching. Baseline levels of corticosterone increased significantly during post-natal development and although chicks(More)
Maternal glucocorticoids are known to affect offspring phenotype in numerous vertebrate taxa. In birds, the maternal transfer of corticosterone to eggs was recently proposed as a hormonal mechanism by which offspring phenotype is matched to the relative quality of the maternal environment. However, current hypotheses lack supporting information on both(More)
Determining the mechanisms that mediate investment decisions between current and future reproductive attempts is still a key goal of life-history studies. Since baseline levels of stress hormones (glucocorticoids - GCs) act as predictive and labile regulators of daily energetic balance in vertebrates they remain excellent candidates for mediating investment(More)