Oliver J Marston

Learn More
An inverse relationship between brain serotonin and food intake and body weight has been known for more than 30 years. Specifically, augmentation of brain serotonin inhibits food intake, while depletion of brain serotonin promotes hyperphagia and weight gain. Through the decades, serotonin receptors have been identified and their function in the(More)
Body weight homeostasis is critically dependent upon the convergence and integration of multiple central and peripheral signalling systems that collectively function to detect and elicit physiological and behavioural responses to nutritional state. To date, only a minority of these signals have been pharmacologically targeted for the treatment of human(More)
The rise in the global prevalence of human obesity has emphasized the need for a greater understanding of the physiological mechanisms that underlie energy homeostasis. Numerous circulating nutritional cues and central neuromodulatory signals are integrated within the brain to regulate both short- and long-term nutritional state. The central melanocortin(More)
Serotonin (5-HT) and leptin play important roles in the modulation of energy balance. Here we investigated mechanisms by which leptin might interact with CNS 5-HT pathways to influence appetite. Although some leptin receptor (LepRb) neurons lie close to 5-HT neurons in the dorsal raphe (DR), 5-HT neurons do not express LepRb. Indeed, while leptin(More)
made up of a total of 6 250 000 peptides (200 mixtures made up of 125 000 tetrapeptides each) (Dooley et al, 1998; Houghten et al, 2006, 2008). Mixtures ranging from 2500 to 125 000 tetrapeptides have yielded clear in vivo activity that is not necessarily related to classic in vitro target-based screening. For mixturebased small molecule libraries the(More)
The maintenance of appropriate glucose levels is necessary for survival. Within the brain, specialized neurons detect glucose fluctuations and alter their electrical activity. These glucose-sensing cells include hypothalamic arcuate nucleus neurons expressing neuropeptide Y (NPY) and lateral hypothalamic area (LHA) neurons expressing orexin/hypocretins(More)
  • 1