Oliver Fleischmann

Learn More
This paper covers a fundamental problem of local phase based signal processing: the isotropic generalization of the classical 1D analytic signal to two dimensions. The well known analytic signal enables the analysis of local phase and amplitude information of 1D signals. Local phase, amplitude and additional orientation information can be extracted by the(More)
We propose a novel curvature estimation algorithm which is capable of estimating the curvature of digital curves and two-dimensional curved image structures. The algorithm is based on the conformal projection of the curve or image signal to the two-sphere. Due to the geometric structure of the embedded signal the curvature may be estimated in terms of first(More)
This work presents new ideas in isotropic multi-dimensional phase based signal theory. The novel approach, called the conformal monogenic signal, is a rotational invariant quadrature filter for extracting local features of any curved signal without the use of any heuristics or steering techniques. The conformal monogenic signal contains the recently(More)
Based on the research results of the Kiel University Cognitive Systems Group in the field of multidimensional signal processing and Computer Vision, this book chapter presents new ideas in 2D/3D and multidimensional signal theory. The novel approach, called the conformal monogenic signal, is a rotationally invariant quadrature filter for extracting(More)
By the utilization of a new laboratory method to synthesize OBrO employing an electric discharge, the visible absorption spectrum of gaseous OBrO has been investigated. Absorption spectra of OBrO have been recorded at 298 K, using a continuous-scan Fourier transform spectrometer at a spectral resolution of 0.8 cm(-1). A detailed vibrational and rotational(More)
We propose a fast calibration method for projector-camera pairs which does not require any special calibration objects or initial estimates of the calibration parameters. Our method is based on a structured light approach to establish correspondences between the camera and the projector view. Using the vanishing points in the camera and the projector view(More)
This work presents the isotropic and orthogonal decomposition of 2D signals into local geometrical and structural components. We will present the solution for 2D image signals in four steps: signal modeling in scale space, signal extension by higher order generalized Hilbert transforms, signal representation in classical matrix form, followed by the most(More)
This work presents a novel rotational invariant quadrature filter approach called the conformal monogenic signal for analyzing i(ntrinsic)1D and i2D local features of any curved 2D signal such as lines, edges, corners and junctions without the use of steering. The conformal monogenic signal contains the monogenic signal as a special case for i1D signals and(More)