Oliver F. Lange

Learn More
Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete(More)
We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as(More)
We describe predictions made using the Rosetta structure prediction methodology for the Eighth Critical Assessment of Techniques for Protein Structure Prediction. Aggressive sampling and all-atom refinement were carried out for nearly all targets. A combination of alignment methodologies was used to generate starting models from a range of templates, and(More)
Protein NMR chemical shifts are highly sensitive to local structure. A robust protocol is described that exploits this relation for de novo protein structure generation, using as input experimental parameters the (13)C(alpha), (13)C(beta), (13)C', (15)N, (1)H(alpha) and (1)H(N) NMR chemical shifts. These shifts are generally available at the early stage of(More)
We have developed an approach for determining NMR structures of proteins over 20 kDa that utilizes sparse distance restraints obtained using transverse relaxation optimized spectroscopy experiments on perdeuterated samples to guide RASREC Rosetta NMR structure calculations. The method was tested on 11 proteins ranging from 15 to 40 kDa, seven of which were(More)
Recent work has shown that NMR structures can be determined by integrating sparse NMR data with structure prediction methods such as Rosetta. The experimental data serve to guide the search for the lowest energy state towards the deep minimum at the native state which is frequently missed in Rosetta de novo structure calculations. However, as the protein(More)
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding(More)
Proteins are inherently plastic molecules, whose function often critically depends on excursions between different molecular conformations (conformers). However, a rigorous understanding of the relation between a protein's structure, dynamics and function remains elusive. This is because many of the conformers on its energy landscape are only transiently(More)
Correlated motions in biomolecules are often essential for their function, for example, allosteric signal transduction or mechanical/thermodynamic energy transport. Principal component analysis (PCA) is a widely used method to extract functionally relevant collective motions from a molecular dynamics (MD) trajectory. Being based on the covariance matrix,(More)