Oliver Einsle

Learn More
Ammonium transporters (Amts) are integral membrane proteins found in all kingdoms of life that fulfill an essential function in the uptake of reduced nitrogen for biosynthetic purposes. Amt-1 is one of three Amts encoded in the genome of the hyperthermophilic archaeon Archaeoglobus fulgidus. The crystal structure of Amt-1 shows a compact trimer with 11(More)
The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key steps in the biological nitrogen cycle, where it participates in the anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum(More)
The flavoprotein WrbA, originally described as a tryptophan (W) repressor-binding protein in Escherichia coli, has recently been shown to exhibit the enzymatic activity of a NADH:quinone oxidoreductase. This finding points toward a possible role in stress response and in the maintenance of a supply of reduced quinone. We have determined the(More)
Nitrite (NO(2)(-)) is a central intermediate in the nitrogen metabolism of microorganisms and plants, and is used as a cytotoxin by macrophages as part of the innate immune response. The bacterial membrane protein NirC acts as a specific channel to facilitate the transport of nitrite anions across lipid bilayers for cytoplasmic detoxification. Despite(More)
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia as a key step within the biological nitrogen cycle. Most recently, the crystal structure of the soluble enzyme from Sulfurospirillum deleyianum could be solved to 1.9 A resolution. This set the basis for new experiments on structural and functional aspects of the(More)
Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an(More)
Denitrification represents an important part of the biogeochemical cycle of the essential element nitrogen. It constitutes the predominant pathway of the reductive dissimilation of nitrate in the environment. Via four enzymatic reactions, nitrate is transformed stepwise to nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), to finally yield(More)
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa(More)
A high-resolution crystallographic analysis of the nitrogenase MoFe-protein reveals a previously unrecognized ligand coordinated to six iron atoms in the center of the catalytically essential FeMo-cofactor. The electron density for this ligand is masked in structures with resolutions lower than 1.55 angstroms, owing to Fourier series termination ripples(More)
Cytochrome c nitrite reductase catalyzes the 6-electron reduction of nitrite to ammonia. This second part of the respiratory pathway of nitrate ammonification is a key step in the biological nitrogen cycle. The x-ray structure of the enzyme from the epsilon-proteobacterium Wolinella succinogenes has been solved to a resolution of 1.6 A. It is a pentaheme(More)