Learn More
Ammonium transporters (Amts) are integral membrane proteins found in all kingdoms of life that fulfill an essential function in the uptake of reduced nitrogen for biosynthetic purposes. Amt-1 is one of three Amts encoded in the genome of the hyperthermophilic archaeon Archaeoglobus fulgidus. The crystal structure of Amt-1 shows a compact trimer with 11(More)
A high-resolution crystallographic analysis of the nitrogenase MoFe-protein reveals a previously unrecognized ligand coordinated to six iron atoms in the center of the catalytically essential FeMo-cofactor. The electron density for this ligand is masked in structures with resolutions lower than 1.55 angstroms, owing to Fourier series termination ripples(More)
The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key steps in the biological nitrogen cycle, where it participates in the anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum(More)
The formate transporter FocA was described to switch its mode of operation from a passive export channel at high external pH to a secondary active formate/H(+) importer at low pH. The crystal structure of Salmonella typhimurium FocA at pH 4.0 shows that this switch involves a major rearrangement of the amino termini of individual protomers in the pentameric(More)
The Amt/Mep/Rh family of integral membrane proteins comprises ammonium transporters of bacteria, archaea and eukarya, as well as the Rhesus proteins found in animals. They play a central role in the uptake of reduced nitrogen for biosynthetic purposes, in energy metabolism, or in renal excretion. Recent structural information on two prokaryotic Amt proteins(More)
The tungsten-iron-sulfur enzyme acetylene hydratase stands out from its class because it catalyzes a nonredox reaction, the hydration of acetylene to acetaldehyde. Sequence comparisons group the protein into the dimethyl sulfoxide reductase family, and it contains a bis-molybdopterin guanine dinucleotide-ligated tungsten atom and a cubane-type [4Fe:4S](More)
Nitrite (NO(2)(-)) is a central intermediate in the nitrogen metabolism of microorganisms and plants, and is used as a cytotoxin by macrophages as part of the innate immune response. The bacterial membrane protein NirC acts as a specific channel to facilitate the transport of nitrite anions across lipid bilayers for cytoplasmic detoxification. Despite(More)
Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an(More)
The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known(More)