Learn More
/ Abstract Transforming research results into marketable products requires considerable endurance and a strong sense of entrepre-neurship. The KUKA Lightweight Robot (LWR) is the latest outcome of a bilateral research collaboration between KUKA Roboter, Augsburg, and the Institute of Robotics and Mechatronics at the German Aerospace Center (DLR), Wessling.(More)
— This paper presents a humanoid two-arm system developed as a research platform for studying dexterous two-handed manipulation. The system is based on the modular DLR-Lightweight-Robot-III and the DLR-Hand-II. Two arms and hands are combined with a three degrees-of-freedom movable torso and a visual system to form a complete humanoid upper body. In this(More)
An anthropomorphic hand arm system using variable stiffness actuation has been developed at DLR. It is aimed to reach its human archetype regarding size, weight and performance. The main focus of our development is put on robustness, dynamic performance and dexterity. Therefore, a paradigm change from impedance controlled, but mechanically stiff joints to(More)
In this article, we gave an overview on the DLR activities related to two approaches for the realization of soft robotics: actively torque-controlled LWRs and VSA. On the basis of our experience with torque-controlled robots, we presented an analysis on expected advantages and also disadvantages of VSA actuators. Furthermore, two VSA joint designs motivated(More)
Bringing mechanically compliant joints to robots is in the focus of interest world wide, especially in the humanoid robotics community. Variable Stiffness Joints (VSJ) promise to gain a high performing and robust robotic system. The presented DLR Floating Spring Joint (FSJ) is a VSJ module designed for the first 4 axes of the anthropomorphic DLR Hand Arm(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may(More)
Fig. 1: The torque-controlled humanoid robot TORO and its development stages from 2010 (DLR Biped [1]) to 2014. Abstract— This paper gives an overview on the torque-controlled humanoid robot TORO, which has evolved from the former DLR Biped. In particular, we describe its mechanical design and dimensioning, its sensors, electronics and computer hardware.(More)
In this paper we introduce a classification of intrinsically compliant joint mechanisms. Furthermore, we outline design considerations for realizing such devices in order to match the requirements for robust and performant actuation. Based on this elaboration, a new design concept is presented, the DLR QA-Joint. Its performance is investigated by various(More)
— This paper gives an overview of the development of a novel biped walking machine. The robot is designed as an experimental system for studying biped locomotion based on torque controlled joints. As an underlying drive technology, the torque controlled joint units of the DLR-KUKA-Lightweight-Robot are employed. The relevant design choices for using this(More)