Learn More
A vital quest in biology is comprehensible visualization and interpretation of correlation relationships on a genome scale. Such relationships may be represented in the form of networks, which usually require disassembly into smaller manageable units, or clusters, to facilitate interpretation. Several graph-clustering algorithms that may be used to(More)
A new method for the mathematical analysis of large metabolic networks is presented. Based on the fact that the occurrence of a metabolic reaction generally requires the existence of other reactions providing its substrates, series of metabolic networks are constructed. In each step of the corresponding expansion process those reactions are incorporated(More)
Under natural conditions, plants are exposed to rapidly changing light intensities. To acclimate to such fluctuations, plants have evolved adaptive mechanisms that optimally exploit available light energy and simultaneously minimise damage of the photosynthetic apparatus through excess light. An important mechanism is the dissipation of excess excitation(More)
Methods are developed for structural analysis of metabolic networks expanding in size. Expansion proceeds in consecutive generations in which new reactions are attached to the network produced in the previous stage. Different rules are applied resulting in various modes of expansion. Expansion is performed on the set of glycolytic reactions as well as on a(More)
We present an integrated analysis of the molecular repertoire of Chlamydomonas reinhardtii under reference conditions. Bioinformatics annotation methods combined with GCxGC/MS-based metabolomics and LC/MS-based shotgun proteomics profiling technologies have been applied to characterize abundant proteins and metabolites, resulting in the detection of 1069(More)
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key enzyme of the Calvin cycle, catalyzing the fixation of inorganic carbon dioxide to organic sugars. Unlike most enzymes, RuBisCO is extremely slow, substrate unspecific, and catalyzes undesired side-reactions, which are considered to be responsible for the slow deactivation observed in(More)
Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in(More)
Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as(More)
The structural design of ATP and NADH producing systems, such as glycolysis and the citric acid cycle (TCA), is analysed using optimization principles. It is assumed that these pathways combined with oxidative phosphorylation have reached, during their evolution, a high efficiency with respect to ATP production rates. On the basis of kinetic and(More)
In principle the knowledge of an organism's metabolic network allows to infer its biosynthetic capabilities. Handorf et al. [2005. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498-512] developed a method of network expansion generating the set of all possible metabolites that can be produced from a set of(More)