Oliver Deuster

Learn More
Inflammatory processes may substantially contribute to the cerebral pathology in Alzheimer's disease (AD) and accelerate the disease progression. The macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine which promotes the production of several inflammatory mediators such as TNF-alpha, IL-6 and IFN-gamma, and plays a central regulatory(More)
Alzheimer's disease (AD) is a neurodegenerative disorder primarily affecting regions of the brain responsible for higher cognitive functions. Immunization against β-amyloid (Aβ) in animal models of AD has been shown to be effective on the molecular level but also on the behavioral level. Recently, we reported naturally occurring autoantibodies against Aβ(More)
There is evidence that naturally occurring antibodies directed against Aβ (nAbs-Aβ) have a role in Aβ-metabolism and Aβ-clearance. The presence of nAbs-Aβ leads to a reduction in amyloid fibrillation and thus a reduction in their toxicity. We investigated the effects of nAbs-Aβ in respect to oligomerization and used the Tg2576 transgenic mouse model in(More)
Macrophage migration inhibitory factor (MIF) is a protein that is overexpressed in many tumors, such as colon and prostate cancer, melanoma, and glioblastoma multiforme (GBM). In its function as a cytokine, MIF induces angiogenesis, promotes cell cycle progression, and inhibits apoptosis. Recently, the molecular signal transduction has been specified: MIF(More)
BACKGROUND Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis. RESULTS Here we show that in vitro targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or(More)
  • 1