Oliver Brylski

  • Citations Per Year
Learn More
Biomolecules evolve and function in densely crowded and highly heterogeneous cellular environments. Such conditions are often mimicked in the test tube by the addition of artificial macromolecular crowding agents. Still, it is unclear if such cosolutes indeed reflect the physicochemical properties of the cellular environment as the in-cell crowding effect(More)
Changes of the extracellular milieu could affect cellular crowding. To prevent detrimental effects, cells use adaptation mechanisms to react to such conditions. Using fluorescent crowding sensors, we show that the initial response to osmotic stress is fast but imperfect, while the slow response renders cells more tolerant to stress, particularly in the(More)
To improve our mechanistic understanding of zinc metalloenzymes, we report a joint computational and experimental study of a minimal carbonic anhydrase (CA) mimic, a 22-residue Zn-finger hydrolase. We combine classical molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free energy simulations(More)
  • 1