Learn More
Highly pathogenic avian influenza viruses (HPAIV) originate from avirulent precursors but differ from all other influenza viruses by the presence of a polybasic cleavage site in their hemagglutinins (HA) of subtype H5 or H7. In this study, we investigated the ability of a low-pathogenic avian H5N1 strain to transform into an HPAIV. Using reverse genetics,(More)
An evolutionary analysis was conducted of 354 hemagglutinin (HA) and 208 neuraminidase (NA) genes, including newly generated sequences of 5 HA and 30 NA, of Egyptian H5N1 clade 2.2.1 viruses isolated from poultry and humans. Five distinct phylogenetically distinguishable clusters arose from a monophyletic origin since 2006. Only two clusters remained in(More)
High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition(More)
Reverse genetics of influenza A viruses has expedited increasingly basic research and vaccine development. Target-primed plasmid amplification using full-length PCR amplicons as inserts was established previously for strain-independent and rapid cloning of all eight influenza A virus genes. This method involves separate amplification of each viral gene(More)
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo.(More)
Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors(More)
Reverse genetics of influenza A viruses facilitates both basic research and vaccine development. However, efficient cloning of virus gene segments was cumbersome in established systems due to the necessary cleavage of amplicons with outside cutter restriction enzymes followed by ligation. Occasionally, virus genes may contain cleavage sites for those(More)
Reassortment of influenza A virus genes enables antigenic shift resulting in the emergence of pandemic viruses with novel hemagglutinins (HA) acquired from avian strains. Here, we investigated whether historic and contemporary avian strains with different replication capacity in human cells can donate their hemagglutinin to a pandemic human virus. We(More)
Highly pathogenic avian influenza viruses (HPAIV) differ from all other strains by a polybasic cleavage site in their hemagglutinin. All these HPAIV share the H5 or H7 subtype. In order to investigate whether the acquisition of a polybasic cleavage site by an avirulent avian influenza virus strain with a hemagglutinin other than H5 or H7 is sufficient for(More)
BACKGROUND Both pandemic and interpandemic influenza is associated with high morbidity and mortality worldwide. Seasonal epidemics are caused by both influenza A and B virus strains that cocirculate with varying predominance and may give rise to severe illness equally. According to World Health Organization recommendations, current annual vaccines are(More)