Learn More
Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To(More)
Declines in coral cover are generally associated with increases in the abundance of fleshy algae. In many cases, it remains unclear whether algae are responsible, directly or indirectly, for coral death or whether they simply settle on dead coral surfaces. Here, we show that algae can indirectly cause coral mortality by enhancing microbial activity via the(More)
The bacterial communities associated with the Caribbean coral Montastrea annularis showing tissue lesions indicative of a White Plague (WP)-like disease were investigated. Two molecular screening techniques using bacterial 16S rDNA genes were used and demonstrated distinct differences between the bacterial communities of diseased and non-diseased coral(More)
Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water(More)
Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by(More)
Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with(More)
AIMS To determine the spatial structure of microbial communities associated with disease lesions of reef corals (Scleractinia). METHODS AND RESULTS Agarose pre-embedding preserved the structure of the disease lesion and surrounding tissues prior to demineralization of the carbonate exoskeleton and embedding in resin. Fluorescence in situ hybridization(More)
Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for(More)
Reef-building corals form complex relationships with a range of microorganisms including bacteria, archaea, fungi and the unicellular microalgae of the genus Symbiodinium, which together form the coral holobiont. These symbionts are known to have both beneficial and deleterious effects on their coral host, but little is known about what the governing(More)