Olga Ostrovsky

Learn More
Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop(More)
GRP94 (glucose-regulated protein of 94 kDa) is a major luminal constituent of the endoplasmic reticulum with known high capacity for calcium in vivo and a peptide-binding activity in vitro. In the present study, we show that Ca2+ regulates the ability of GRP94 to bind peptides. This effect is due to a Ca2+-binding site located in the charged linker domain(More)
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER) chaperone for which only few client proteins and no cofactors are known and whose mode of action is unclear. To decipher the mode of GRP94 action in vivo, we exploited our finding that GRP94 is necessary for the production of insulin-like growth factor (IGF)-II and developed a cell-based(More)
Insulin-like growth factor (IGF)-II is a hormone with mitogenic activity for many cell types and tissues. We demonstrate that its intracellular processing and secretion strictly depend on the endoplasmic reticulum chaperone glucose-regulated protein (GRP) 94. GRP94 interacts physically and transiently with pro-IGF-II intermediates, and its activity is(More)
The chaperone glucose-regulated protein 94 (GRP94) has long been used to augment peptide presentation to T cells. This chaperone binds antigenic peptides, binds to receptors on professional antigen-presenting cells (APCs), activates these cells and after internalization, transfers the peptides to MHC class I for activation of T cells. Here we show that all(More)
Heat shock protein 90 (Hsp90) represents a promising therapeutic target for the treatment of cancer and other diseases. Unfortunately, results from clinical trials have been disappointing as off-target effects and toxicities have been observed. These detriments may be a consequence of pan-Hsp90 inhibition, as all clinically evaluated Hsp90 inhibitors(More)
The endoplasmic reticulum chaperone GRP94 is essential for early embryonic development and in particular affects differentiation of muscle lineages. To determine why an ubiquitously expressed protein has such a specific effect, we investigated the function of GRP94 in the differentiation of established myogenic cell lines in culture. Using both genetic(More)
Insulin-like growth factors (IGFs) are critical for development and growth of skeletal muscles, but because several tissues produce IGFs, it is not clear which source is necessary or sufficient for muscle growth. Because it is critical for production of both IGF-I and IGF-II, we ablated glucose-regulated protein 94 (GRP94) in murine striated muscle to test(More)
GRP94 is an essential chaperone in the endoplasmic reticulum (ER) whose function remains rather enigmatic. GRP94 has only a few known client proteins, no known cochaperones, and its mode of action and regulation are obscure. To understand the functions of GRP94 in vivo, we developed a mammalian cell-based assay, taking advantage of our recent finding that(More)
  • 1