Olga Korotkova

Learn More
We introduce three-dimensional (3D) stationary, electromagnetic Gaussian Schell-model (GSM) sources in the space-frequency domain and derive the realizability conditions that the source parameters must obey. In particular, we extend to 3D GSM sources two approaches to the realizability conditions presented previously for beam-like GSM sources. The results(More)
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave(More)
An experimental study has been performed of a laser beam propagating horizontally through the near-ground atmosphere above a grassy field at the University of Miami (UM) Coral Gables campus. The average intensity, scintillation index, and intensity correlation function are measured in the receiver plane for three channels with different turbulent conditions(More)
A class of random stationary, scalar sources producing cusped average intensity profiles (i.e. profiles with concave curvature) in the far field is introduced by modeling the source degree of coherence as a Fractional Multi-Gaussian-correlated Schell-Model (FMGSM) function with rotational symmetry. The average intensity (spectral density) generated by such(More)
The structure of the degree of coherence of wide-sense statistically stationary planar sources radiating far fields with intensity patterns with azimuthal dependence is determined, to the best of our knowledge, for the first time. The Fourier series basis is used in decomposing arbitrary far-field intensity for obtaining the azimuthal modes, which are shown(More)
A simple formula is derived for predicting transverse intensity distribution of coherent and partially coherent (Schell-model) scalar beams propagating in extended linear isotropic, homogeneous media with given power spectra of refractive index. The examples illustrate how the formula can be applied to different beams propagating in atmospheric and oceanic(More)
Considerable amount of data has been collected in the past asserting that atmospheric turbulence has regions where it exhibits anisotropic statistics. For instance, it is known that the fluctuations in the refractive index within the first meter above the ground are typically stronger in the vertical direction compared with those in the horizontal(More)
We introduce two novel classes of partially coherent sources whose degrees of coherence are described by the rectangular Lorentz-correlated Schell-model (LSM) and rectangular fractional multi-Gaussian-correlated Schell-model (FMGSM) functions. Based on the generalized Collins formula, analytical expressions are derived for the spectral density distributions(More)
Reduction in the scintillation index of multi-Gaussian Schell-model beams propagating in turbulent air is demonstrated as a function of two source parameters: the r.m.s. coherence width and the summation index. The beams were generated with the help of a nematic phase-only, reflective spatial light modulator at a cycling rate of 333 frames per second and(More)