Olga I Moskalenko

Learn More
The chaotic synchronization regime in coupled dynamical systems is considered. It has been shown that the onset of a synchronous regime is based on the appearance of a phase relation between the interacting chaotic oscillator frequency components of Fourier spectra. The criterion of synchronization of spectral components as well as the measure of(More)
A method for the estimation of the Lyapunov exponent corresponding to enslaved phase dynamics from time series has been proposed. It is valid for both nonautonomous systems demonstrating periodic dynamics in the presence of noise and coupled chaotic oscillators and allows us to estimate precisely enough the value of this Lyapunov exponent in the(More)
Intermittent behavior occurs widely in nature. At present, several types of intermittencies are known and well-studied. However, consideration of intermittency has usually been limited to the analysis of cases when only one certain type of intermittency takes place. In this paper, we report on the temporal behavior of the complex neuronal network in the(More)
A phenomenon of intermittency of intermittencies is discovered in the temporal behavior of two coupled complex systems. We observe for the first time the coexistence of two types of intermittent behavior taking place simultaneously near the boundary of the synchronization regime of coupled chaotic oscillators. This phenomenon is found both in the numerical(More)
In this Brief Report we study both experimentally and numerically the intermittent behavior taking place near the boundary of the synchronous time scales of chaotic oscillators being in the regime of time scale synchronization. We have shown that the observed type of the intermittent behavior should be classified as the ring intermittency.
This paper deals with two types of synchronous behavior of chaotic oscillators — generalized synchronization and noise–induced synchronization. It has been shown that both these types of synchronization are caused by similar mechanisms and should be considered as the same type of the chaotic oscillator behavior. The mechanisms resulting in the generalized(More)
  • 1