Learn More
Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break(More)
Graft failure in the transplantation of hematopoietic stem cells occurs despite donor-host genetic identity of human leukocyte antigens, suggesting that additional factors modulate engraftment. With the nobese diabetic (NOD)–severe combined immunodeficiency (SCID) xenotransplantation model, we found that the NOD background allowed better hematopoietic(More)
The detection of primitive hematopoietic cells based on repopulation of immune-deficient mice is a powerful tool to characterize the human stem-cell compartment. Here, we identify a newly discovered human repopulating cell, distinct from previously identified repopulating cells, that initiates multilineage hematopoiesis in NOD/SCID mice. We call such cells(More)
Hematopoiesis requires tight regulation of the hematopoietic stem cell (HSC) population; however, the dynamics of HSC use at steady state are uncertain. Over 3–7 months, we evaluated the repopulation and self-renewal of more than 600 individual human 'severe combined immunodeficiency mouse–repopulating cells' (SRCs), tracked on the basis of lentiviral(More)
Intratumoral heterogeneity arises through the evolution of genetically diverse subclones during tumor progression. However, it remains unknown whether cells within single genetic clones are functionally equivalent. By combining DNA copy number alteration (CNA) profiling, sequencing, and lentiviral lineage tracking, we followed the repopulation dynamics of(More)
A major problem hampering effective stem cell–based therapies is the absence of a clear understanding of the human hematopoietic stem cell (HSC) pool composition. The severe combined immunodeficiency (SCID) repopulating cell (SRC) xenotransplant assay system provides a powerful tool for characterizing the frequency, cell surface markers, cell cycle status,(More)
Fanconi anaemia (FA) is an autosomal recessive disease characterized by bone marrow failure, variable congenital malformations and predisposition to malignancies1,2. Cells derived from FA patients show elevated levels of chromosomal breakage and an increased sensitivity to bifunctional alkylating agents such as mitomycin C (MMC) and diepoxybutane (DEB)3,4.(More)
Current procedures for the genetic manipulation of hematopoietic stem cells are relatively inefficient due, in part, to a poor understanding of the conditions for ex vivo maintenance or expansion of stem cells. We report improvements in the retroviral transduction of human stem cells based on the SCID-repopulating cell (SRC) assay and analysis of Lin(-)(More)
Progress to uncover the molecular and cellular regulators that govern human hematopoietic stem cell (HSC) fate has been impeded by an inability to obtain highly purified fractions of HSCs. We report that the rhodamine 123 (Rho 123) dye effluxing fraction of the Lin-CD34+CD38- population contains SCID-repopulating cells (SRCs) capable of long-term(More)
The ontogeny of the hematopoietic system in mammalian embryos occurs during the yolk sac (YS) and the fetal liver (FL) stages. Events leading to the establishment of hematopoiesis in the FL remain obscure. The appearance of colony-forming units-spleen (CFU-S) in the FL is preceded by a gradual increase of CFU-S in the YS and a more rapid increase in the AGM(More)