Learn More
Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity.(More)
HU is a highly conserved protein that is believed to play an important role in the architecture and dynamic compaction of bacterial DNA. Its ability to control DNA bending is crucial for functions such as transcription and replication. The effects of HU on the DNA structure have been studied so far mainly by single molecule methods that require us to apply(More)
Electron transport through Si-C bound alkyl chains, sandwiched between and Hg, is characterized by two distinct types of barriers, each dominating in a different voltage range. At low voltage, the current depends strongly on temperature but not on molecular length, suggesting transport by thermionic emission over a barrier in the Si. At higher voltage, the(More)
DNA origami is a robust method for the fabrication of nanoscale 2D and 3D objects with complex features and geometries. The process of DNA origami folding has been recently studied, however quantitative understanding of it is still elusive. Here, we describe a systematic quantification of the assembly process of DNA nanostructures, focusing on the(More)
A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional(More)
Antibiotic resistance and the colonization of bacteria on surfaces, often as biofilms, prolong hospitalization periods, increase mortality, and are thus major concerns for health care providers. There is an urgent need for antimicrobial and antibiofilm surface treatments that are permanent, can eradicate both biofilms and planktonic pathogens over long(More)
Polyimides are widely used for the external surfaces of spacecraft. In low Earth orbit (LEO), they are exposed to atomic oxygen (AO) and to problems of electrostatic discharge (ESD). This work demonstrates that liquid-phase deposition (LPD) of titania creates a protective coating on Kapton polyimide that is effective in reducing AO-induced surface erosion(More)
Polyimides are widely used in thermal blankets covering the external surfaces of spacecrafts due to their space durability and their thermo-optical properties. However, they are susceptible to atomic oxygen (AO) erosion, the main hazard of low Earth orbit (LEO), and to electrical charging. This work demonstrates that liquid phase deposition (LPD) of 100 nm(More)
Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant(More)
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to(More)