Learn More
Neurons in the medial superior olive (MSO) analyze interaural time differences (ITDs) by comparing the arrival times of the two excitatory inputs from each ear using a coincidence detection mechanism. They also receive a prominent inhibitory, glycinergic projection from the ipsilateral medial nucleus of the trapezoid body (MNTB), which contributes to the(More)
BACKGROUND Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of(More)
Rhodamine 123 staining, light and electron microscopy were used to evaluate the ultrastructural and functional state of cultured cerebellar granule cells after short treatment with the solution where NaCl was substituted by sucrose (sucrose balance salt medium, SBSM). Cell exposure to SBSM for 20 min resulted in the fact that mitochondria in the neurons(More)
Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure.(More)
Across all sensory modalities, the effect of context-dependent neural adaptation can be observed at every level, from receptors to perception. Nonetheless, it has long been assumed that the processing of interaural time differences, which is the primary cue for sound localization, is nonadaptive, as its outputs are mapped directly onto a hard-wired(More)
Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of >100 Hz. They are able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megaohms and high synaptic conductances in vivo. The biophysical mechanisms by which these(More)
Magnetic fluctuations in the solar wind are distributed according to Kol-mogorov's power law f −5/3 below the ion cyclotron frequency f ci. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade , the nature of which is still an open(More)
The mammalian cochlea is under direct control of two groups of cholinergic auditory brainstem neurons, the medial and the lateral olivocochlear neurons. The former modulate the electromechanical amplification in outer hair cells and the latter the transduction of inner hair cells to auditory nerve fibers. The lateral olivocochlear neurons express not only(More)