Learn More
Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome(More)
Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen(More)
The kinetochore is a complex molecular machine that serves as the interface between sister chromatids and the mitotic spindle. The kinetochore assembles at a particular chromosomal locus, the centromere, which is essential to maintain genomic stability during cell division. The kinetochore is a macromolecular puzzle of subcomplexes assembled in a(More)
Here we discuss a "chromosome separation checkpoint" that might regulate the anaphase-telophase transition. The concept of cell cycle checkpoints was originally proposed to account for extrinsic control mechanisms that ensure the order of cell cycle events. Several checkpoints have been shown to regulate major cell cycle transitions, namely at G1-S and(More)
Kinetochores bind spindle microtubules and also act as signaling centers that monitor this interaction. Defects in kinetochore assembly lead to chromosome missegregation and aneuploidy. The interaction between microtubules and chromosomes involves a conserved super-complex of proteins, known as the KNL1Mis12Ndc80 (KMN) network, composed by the KNL1(More)
  • 1