Learn More
The neurophysiological prerequisites for the development and operation of the brain-computer interfaces (BCI) that allow cerebral electrical signals alone to control external technical devices are considered. A BCI based on the discrimination of the EEG patterns related to imagery of extremity movements is described. The possibility of the rehabilitation of(More)
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system(More)
BACKGROUND Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. PURPOSE To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface(More)
The sources of brain activity that make the maximum contribution to EEG patterns corresponding to motor imagery have been studied. The accuracy of their classification determines the efficiency of brain-computer interface (BCI) for controlling external technical devices directly by brain signals, without the involvement of muscle activity. Brain activity(More)
The physiological mechanisms underlying the process of motor imagery have significant similarities with the mechanisms of motor control, and this can be used for the rehabilitation of patients with movement disorders. In patients with severe paresis, motor imagery may be the only method producing movement recovery. Over the last decade, this has led to(More)
The dynamics of motor function recovery in a patient with an extensive brain lesion has been investigated during a course of neurorehabilitation assisted by a hand exoskeleton controlled by a brain–computer interface. Biomechanical analysis of the movements of the paretic arm recorded during the rehabilitation course was used for an unbiased assessment of(More)
The paper examines neurophysiological basis for development and performance of brain-computer interface (BCI) that permits cerebral activity alone to control computers or other external technical devices. BCI based on the discrimination of EEG patterns related to an imagery of extremity movements is considered. The problem of BCI application to restoring of(More)
We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions(More)
Spasticity is a type of muscle hyperactivity that occurs in patients after focal lesions of the Central nervous system due to various diseases: stroke, traumatic brain injury or spinal cord injury, neurosurgical intervention, as well as multiple sclerosis and other diseases of the Central nervous system and is the most disability manifestation of the(More)