Olesya Mokienko

Learn More
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system(More)
A brain-computer interface (BCI) provides a direct functional interaction between the human brain and the external device. Many kinds of signals (from electromagnetic to metabolic [23, 38, 42]) could be used in BCI. However the most widespread BCI systems are based on EEG recordings. BCI consists of a brain signal acquisition system, data processing(More)
BACKGROUND Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. PURPOSE To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface(More)
The neurophysiological prerequisites for the development and operation of the brain-computer interfaces (BCI) that allow cerebral electrical signals alone to control external technical devices are considered. A BCI based on the discrimination of the EEG patterns related to imagery of extremity movements is described. The possibility of the rehabilitation of(More)
Motor recovery in post-stroke and post-traumatic patients using exoskeleton controlled by the brain-computer interface (BCI) is a new and promising rehabilitation procedure. Its development is a multidisciplinary research which requires, the teamwork of experts in neurology, neurophysiology, physics, mathematics, biomechanics and robotics. Some aspects of(More)
The sources of brain activity that make the maximum contribution to EEG patterns corresponding to motor imagery have been studied. The accuracy of their classification determines the efficiency of brain-computer interface (BCI) for controlling external technical devices directly by brain signals, without the involvement of muscle activity. Brain activity(More)
Motor imagery can stimulate the same neuroplastic mechanisms of the brain as their actual execution. The motor imagery can be controlled via the brain–computer interface (BCI), which transforms the EEG signals of the brain appearing during the motor imagery into commands for the external device. The results of the two-stage study of the application of a(More)
The dynamics of motor function recovery in a patient with an extensive brain lesion has been investigated during a course of neurorehabilitation assisted by a hand exoskeleton controlled by a brain–computer interface. Biomechanical analysis of the movements of the paretic arm recorded during the rehabilitation course was used for an unbiased assessment of(More)
The physiological mechanisms underlying the process of motor imagery have significant similarities with the mechanisms of motor control, and this can be used for the rehabilitation of patients with movement disorders. In patients with severe paresis, motor imagery may be the only method producing movement recovery. Over the last decade, this has led to(More)
The paper examines neurophysiological basis for development and performance of brain-computer interface (BCI) that permits cerebral activity alone to control computers or other external technical devices. BCI based on the discrimination of EEG patterns related to an imagery of extremity movements is considered. The problem of BCI application to restoring of(More)