Learn More
The purification, renewal and differentiation of native cardiac progenitors would form a mechanistic underpinning for unravelling steps for cardiac cell lineage formation, and their links to forms of congenital and adult cardiac diseases. Until now there has been little evidence for native cardiac precursor cells in the postnatal heart. Herein, we report(More)
Pulmonary vascular medial hypertrophy caused by excessive pulmonary artery smooth muscle cell (PASMC) proliferation is a major cause for the elevated pulmonary vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Increased Ca(2+) influx is an important stimulus for PASMC proliferation. Transient receptor potential (TRP)(More)
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and(More)
Capacitative Ca(2+) entry (CCE) through store-operated Ca(2+) (SOC) channels plays an important role in returning Ca(2+) to the sarcoplasmic reticulum (SR) and regulating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). A rise in [Ca(2+)](cyt) and sufficient Ca(2+) in the SR are required for pulmonary artery smooth muscle cell (PASMC) proliferation. We(More)
The pore-forming alpha-subunit, Kv1.5, forms functional voltage-gated K(+) (Kv) channels in human pulmonary artery smooth muscle cells (PASMC) and plays an important role in regulating membrane potential, vascular tone, and PASMC proliferation and apoptosis. Inhibited Kv channel expression and function have been implicated in PASMC from patients with(More)
Activity of voltage-gated K+ (KV) channels regulates membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). A rise in ([Ca2+](cyt))in pulmonary artery (PA) smooth muscle cells (SMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation. Chronic hypoxia (PO(2) 30-35 mmHg for 60-72 h) decreased mRNA expression of KV(More)
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation(More)
Sweeney, Michele, Ying Yu, Oleksandr Platoshyn, Shen Zhang, Sharon S. McDaniel, and Jason X.-J. Yuan. Inhibition of endogenous TRP1 decreases capacitative Ca2 entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283: L144–L155, 2002. First published February 8, 2002; 10.1152/(More)
Acute hypoxia causes pulmonary vasoconstriction in part by inhibiting voltage-gated K(+) (Kv) channel activity in pulmonary artery smooth muscle cells (PASMC). The hypoxia-mediated decrease in Kv currents [I(K(V))] is selective to PASMC; hypoxia has little effect on I(K(V)) in mesenteric artery smooth muscle cells (MASMC). Functional Kv channels are homo-(More)
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored(More)