Oleksandr Kolomiyets

Learn More
Many NLP applications require information about locations of objects referenced in text, or relations between them in space. For example, the phrase a book on the desk contains information about the location of the object book, as trajector, with respect to another object desk, as landmark. Spatial Role Labeling (SpRL) is an evaluation task in the(More)
We propose a new approach to characterizing the timeline of a text: temporal dependency structures, where all the events of a narrative are linked via partial ordering relations like BEFORE, AFTER, OVERLAP and IDENTITY. We annotate a corpus of children’s stories with temporal dependency trees, achieving agreement (Krippendorff’s Alpha) of 0.856 on the event(More)
In this paper we describe a system for the recognition and normalization of temporal expressions (Task 13: TempEval-2, Task A). The recognition task is approached as a classification problem of sentence constituents and the normalization is implemented in a rule-based manner. One of the system features is extending positive annotations in the corpus by(More)
We explore a semi-supervised approach for improving the portability of time expression recognition to non-newswire domains: we generate additional training examples by substituting temporal expression words with potential synonyms. We explore using synonyms both from WordNet and from the Latent Words Language Model (LWLM), which predicts synonyms in context(More)
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing(More)
We present an approach to annotating timelines in stories where events are linked together by temporal relations into a temporal dependency tree. This approach avoids the disconnected timeline problems of prior work, and results in timelines that are more suitable for temporal reasoning. We show that annotating timelines as temporal dependency trees is(More)
In this paper we describe the technical implementation of our system that participated in the Helping Our Own 2012 Shared Task (HOO-2012). The system employs a number of preprocessing steps and machine learning classifiers for correction of determiner and preposition errors in non-native English texts. We use maximum entropy classifiers trained on the(More)