Learn More
Two-dimensional (2D) compounds provide unique building blocks for novel layered devices and hybrid photonic structures. However, large surface-to-volume ratio in thin films enhances the significance of surface interactions and charging effects requiring new understanding. Here we use micro-photoluminescence (PL) and ultrasonic force microscopy to explore(More)
The structure of nanometer-sized strained Ge islands epitaxially grown on a Si substrate was studied using ultrasonic force microscopy (UFM), which combines the sensitivity to elastic structure of acoustic microscopy with the nanoscale spatial resolution of atomic force microscopy. UFM not only images the local surface elasticity variations between the Ge(More)
We present measurements of the nanoscale elastic and viscoelastic properties of samples of poly(methylmetacrylate) (PMMA)/rubber nanocomposites. For these studies we have used a new technique based on atomic force microscopy (AFM) with ultrasonic excitation, heterodyne force microscopy (HFM), which provides a means of testing the viscoelastic response of(More)
Previously, we have developed a retro-inverso peptide inhibitor (RI-OR2, rGffvlkGr) that blocks the in vitro formation and toxicity of the Aβ oligomers which are thought to be a cause of neurodegeneration and memory loss in Alzheimer's disease. We have now attached a retro-inverted version of the HIV protein transduction domain 'TAT' to RI-OR2 to target(More)
The aggregation of amyloid-β peptides into protein fibres is one of the main neuropathological features of Alzheimer's disease (AD). While imaging of amyloid-β aggregate morphology in vitro is extremely important for understanding AD pathology and in the development of aggregation inhibitors, unfortunately, potentially highly toxic, early aggregates are(More)
The aggregation of amyloid-b peptides into protein fibres is one of the main neuropathological features of Alzheimer's disease (AD). While imaging of amyloid-b aggregate morphology in vitro is extremely important for understanding AD pathology and in the development of aggregation inhibitors, unfortunately, potentially highly toxic, early aggregates are(More)
We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface(More)
The excellent sensitivity of scanning probe microscopy (SPM) to nanoscale surface features has the coupled shortcoming – a low or no sensitivity to subsurface structures. While some SPM techniques like Scanning Thermal Microscopy (SThM) do image some subsurface structures, their resolution remains limited by the contact probe size, thermal diffusion length(More)
  • 1