Oleg N. Osipenko

Learn More
1. The contributions of specific K+ currents to the resting membrane potential of rabbit isolated, pulmonary artery myocytes, and their modulation by hypoxia, were investigated by use of the whole-cell, patch-clamp technique. 2. In the presence of 10 microM glibenclamide the resting potential (-50 +/- 4 mV, n = 18) was unaffected by 10 microM(More)
1. An outward current (IK(N)) was identified in rabbit pulmonary artery myocytes, which persisted after Ca(2+)-activated and ATP-sensitive K+ currents were blocked by TEA (10 mM) and glibenclamide (10 microM), respectively, and after A-like (IK(A)) and delayed rectifer (IK(V)) K+ currents were inactivated by clamping the cell at 0 mV for 10 min. It was(More)
Pituitary adenylyl cyclase-activating peptide (PACAP) stimulates calcium transients and catecholamine secretion in adrenal chromaffin and PC12 cells. The PACAP type 1 receptor in these cells couples to both adenylyl cyclase and phospolipase C pathways, but although phospolipase C has been implicated in the response to PACAP, the role of adenylyl cyclase is(More)
Hypoxia inhibits voltage-gated K channels in pulmonary artery smooth muscle (PASM). This is thought to contribute to hypoxic pulmonary vasoconstriction by promoting membrane depolarization, Ca(2+) influx, and contraction. Several of the K-channel subtypes identified in pulmonary artery have been implicated in the response to hypoxia, but contradictory(More)
1. The connection between an interneuron initiating pacemaker activity in the bursting RPa1 neuron and the bursting neuron itself (Pin and Gola, 1983) has been analyzed in the snailHelix pomatia. 2. Prolonged depolarization of the interneuronal membrane produced in it a series of action potentials as well as a parallel initiation or enhancement of bursting(More)
1. We examined Ca2+ influx mechanisms using the whole-cell patch-clamp technique in primary cultures of rat glomerulosa cells. 2. Depolarization of the plasma membrane, as studied by a stepwise or ramp depolarization technique, activated low-threshold, transient (T-type) and high-threshold, long-lasting (L-type) voltage-dependent calcium channels (VDCCs).(More)
The object of these experiments was to investigate whether noradrenaline is the signal neurotransmitter between the sympathetic nervous system and rat thymocytes. Using immunocytochemistry, evidence was obtained that the rat thymus (thymic capsule, subcapsular region and connective tissue septa) is innervated by noradrenergic varicose axons terminals(More)
Exposing rats to chronic hypoxia increased the 4-aminopyridine (4-AP) sensitivity of pulmonary arteries. 1 mM 4-AP caused smooth muscle cell depolarization and contraction in arteries from hypoxic rats, but had little effect in age-matched controls. Chronic hypoxia downregulated delayed rectifier K+ current (IK(V)), which was nearly 50% blocked by 1 mM(More)
Pulmonary vascular tone is strongly influenced by the resting membrane potential of smooth muscle cells, depolarization promoting Ca2+ influx, and contraction. The resting potential is determined largely by the activity of K+-selective ion channels, the molecular nature of which has been debated for some time. In this study, we provide strong evidence that(More)