Learn More
We report on the results of a systematic ab initio study of the magnetic structure of Fe rich fcc FeNi binary alloys for Ni concentrations up to 50 at. %. Calculations are carried out within density-functional theory using two complementary techniques, one based on the exact muffin-tin orbital theory within the coherent potential approximation and another(More)
The phase stability of group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the body-centered-cubic phase relative to low-symmetry rhombohedral phases. We show that band-structure effects determine phase stability(More)
Configurational thermodynamics of the Fe-Cr sigma phase is investigated on the basis of an Ising-type configurational Hamiltonian and a single-site mean-field model for the free energy. The parameters of the statistical models are obtained from efficient first-principles calculations using different computational techniques. We demonstrate that the(More)
We present an explanation for the puzzling spectral and transport properties of layered cobaltates close to the band-insulator limit, which relies on the key effect of charge ordering. Blocking a significant fraction of the lattice sites deeply modifies the electronic structure in a way that is shown to be quantitatively consistent with photoemission(More)
  • 1