Oleg A Filippov

  • Citations Per Year
Learn More
Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these(More)
Molecular conductors based on the 8-hydroxy cobalt bis(dicarbollide) anion, (TMTTF)[8-HO-3,3'-Co(1,2-C2B9H10)(1',2'-C2B9H11)] (1), (BMDT-TTF)[8-HO-3,3'-Co(1,2-C2B9H10) (1',2'-C2B9H11)] (2), and (BEDT-TTF)[8-HO-3,3'-Co(1,2-C2B9H10)(1',2'-C2B9H11)] (3), were synthesized, and their crystal structures and electrical conductivities were determined. Compounds 2(More)
Combining variable-temperature infrared and NMR spectroscopic studies with quantum-chemical calculations (density functional theory (DFT) and natural bond orbital) allowed us to address the problem of competition between MH (M = transition metal) and BH hydrogens as proton-accepting sites in dihydrogen bond (DHB) and to unravel the mechanism of proton(More)
The interaction of the η(1)-tetrahydroborate copper(i) complex (triphos)Cu(η(1)-BH4) () with proton donors [CF3CH2OH (TFE), (CF3)2CHOH (HFIP), (CF3)3COH (PFTB), PhOH, p-NO2C6H4OH (PNP), p-NO2C6H4N[double bond, length as m-dash]NC6H4OH (PNAP), CF3OH] was a subject of a combined IR spectroscopic and theoretical investigation. Spectral (Δν) and thermodynamic(More)
The mechanism of transition-metal tetrahydroborate dimerization was established for the first time on the example of (Ph(3)P)(2)Cu(η(2)-BH(4)) interaction with different proton donors [MeOH, CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH, (CF(3))(3)CHOH, p-NO(2)C(6)H(4)OH, p-NO(2)C(6)H(4)N═NC(6)H(4)OH, p-NO(2)C(6)H(4)NH(2)] using the combination of(More)
The combination of variable temperature (190-297 K) IR and NMR spectroscopy studies with quantum-chemical calculations at the DFT/B3PW91 and AIM level had the aim to determine the mechanism of proton transfer to CpRuH(dppe) (1, dppe = Ph(2)P(CH(2))(2)PPh(2)) and the structures of intermediates. Dihydrogen bond (DHB) formation was established in the case of(More)
The reaction of [RhCl(P,S(t)Bu)(COD)] (1) or [Rh(P,S(t)Bu)(COD)]BF4 (2) where (P,S(t)Bu) is CpFe[η(5)-1,2-C5H3(PPh2)(CH2S(t)Bu)] with H2 in MeOH gives rise to COD hydrogenation and formation of a solvent-stabilized product. The formation of hydride species cannot be observed in view of a very rapid H/D exchange between H2 and the solvent. Introduction of(More)
Complexes [RhCl(diene)(P,SR)] with chiral ferrocenyl phosphine-thioethers ligands (diene = norbornadiene, NBD, 1(R), or 1,5-cyclooctadiene, COD, 3(R); P,SR = CpFe(1,2-η(5)-C(5)H(3)(PPh(2))(CH(2)SR); R = tBu, Ph, Bz, Et) and the corresponding [Rh(diene)(P,SR)][BF(4)] (diene = NBD, 2(R); COD, 4(R)) have been synthesized from [RhCl(diene)](2) and the(More)
The interaction of CpM(CO)3H (M = Mo, W) hydrides as proton donors with different bases (B = pyridine, (n-Oc)3PO, ((CH3)2N)3PO, H3BNEt3) was studied by variable temperature IR spectroscopy and theoretically by DFT/B3LYP calculations. The data obtained show for the first time the formation of intermolecular hydrogen bonds between the neutral transition metal(More)
Low-temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe(3))(2)] (1) by Et(2)OHBF(4) gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(eta(2)-H(2))(PMe(3))(2)](+) (2) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)(2)(PMe(3))(2)](+) (3) is the only observable product in(More)