Oldamur Hollóczki

Learn More
The carbene concentration in 1-ethyl-3-methylimidazolium-acetate ionic liquid is sufficiently high to act as a catalyst in benzoin condensation, hydroacylation and also in oxidation of an alcohol by using CO(2) and air. This observation reveals the potential of ionic liquid organocatalysts, uniting the beneficial properties of these two families of(More)
The reaction energy profiles of the benzoin condensation from three aldehydes catalyzed by imidazol-2-ylidene, triazol-3-ylidene, and thiazol-2-ylidene have been investigated computationally. The barriers for all steps of all investigated reactions have been found to be low enough to indicate the viability of the mechanism proposed by Breslow in the 1950s.(More)
Supported ionic liquid membranes (SILMs) are promising tools for the separation of carbon dioxide from other gases. In this paper, new imidazolium, pyrrolidinium, piperidinium, and morpholinium ionic liquids with a triethylene glycol side chain and tosylate anions, as well as their symmetrical dicationic analogues, have been synthesized and incorporated(More)
Carbon dioxide-ionic liquid systems are of great current interest, and significant efforts have been made lately to understand the intermolecular interactions in these systems. In general, all the experimental and theoretical studies have concluded so far that the main solute-solvent interaction takes effect through the anion, and the cation has no, or only(More)
We present a comprehensive molecular dynamics simulation study on 1-butyl-3-methylimidazolium ionic liquids and their fluorinated analogs. The work focused on the effect of fluorination at varying anions. The main findings are that the fluorination of the cations side chain increases overall structuring, especially the aggregation of cation side chain.(More)
The direct reaction of an imidazole-2-ylidene in a predominantly aqueous environment [about 0.1 M solution in a H(2)O (>60%)/THF solvent system] was investigated for the first time. The reaction yielded a stable solution of the corresponding imidazolium-hydroxide of pH 13, which is in agreement with results from an ab initio molecular dynamics simulation.(More)
We present a theoretical study of carbene formation from the 1-ethyl-3-methylimidazolium acetate ionic liquid in the absence and presence of CO2 in gas and liquid phase. Although CO2 physisorption constitutes a precursory step of chemisorption (the CO2's reaction with carbenes, which forms from cations via proton abstraction by anions), it also enables a(More)
The vibrational spectra of the ionic liquid 1-ethyl-3-methylimidazolium acetate and its mixtures with water and carbon dioxide are calculated using ab initio molecular dynamics simulations, and the results are compared to experimental data. The new implementation of a normal coordinate analysis in the trajectory analyzer TRAVIS is used to assign the(More)
In this paper we show by using static DFT calculations and classical molecular dynamics simulations that the charge transfer between ionic liquid ions plays a major role in the observed discrepancies between the overall mobility of the ions and the observed conductivities of the corresponding ionic liquids, while it also directly suppresses the association(More)
The solvation of the carbene 1-ethyl-3-methylimidazole-2-ylidene in the ionic liquid 1-ethyl-3-methylimidazolium acetate was investigated by ab initio molecular dynamics simulations in order to reveal the interaction between these two highly important classes of materials: N-heterocyclic carbenes with superb catalytic activity and ionic liquids with(More)