Olafur Stefansson

Learn More
INTRODUCTION Germline mutations in the BRCA1 and BRCA2 genes account for a considerable fraction of familial predisposition to breast cancer. Somatic mutations in BRCA1 and BRCA2 have not been found and the involvement of these genes in sporadic tumour development therefore remains unclear. METHODS The study group consisted of 67 primary breast tumours(More)
We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive(More)
INTRODUCTION BRCA1 or BRCA2 germline mutations increase the risk of developing breast cancer. Tumour cells from germline mutation carriers have frequently lost the wild-type allele. This is predicted to result in genomic instability where cell survival depends upon dysfunctional checkpoint mechanisms. Tumorigenic potential could then be acquired through(More)
Using whole blood from 15 twin pairs discordant for breast cancer and high-resolution (450K) DNA methylation analysis, we identified 403 differentially methylated CpG sites including known and novel potential breast cancer genes. Confirming the results in an independent validation cohort of 21 twin pairs determined the docking protein DOK7 as a candidate(More)
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients(More)
Triple-negative breast cancer (TNBC) occurs in approximately 15% of all breast cancer patients, and the incidence of TNBC is greatly increased in BRCA1 mutation carriers. This study aimed to assess the impact of BRCA1 promoter methylation with respect to breast cancer subtypes in sporadic disease. Tissue microarrays (TMAs) were constructed representing(More)
Members of the Polycomb-group (PcG) family of proteins, including EZH2 (enhancer of zeste homolog 2), are involved in establishing epigenetic silencing of developmental genes in adult and embryonic stem cells, and their deregulation has been implicated in cancer. In a recent report, EZH2-mediated epigenetic repression of DNA damage repair in breast tumor(More)
BACKGROUND Inherited mutations in the BRCA2 gene greatly increase the risk of developing breast cancer. Consistent with an important role for BRCA2 in error-free DNA repair, complex genomic changes are frequently observed in tumors derived from BRCA2 mutation carriers. Here, we explore the impact of DNA copy-number changes in BRCA2 tumors with respect to(More)
Overexpression of the Aurora A kinase has been shown to have prognostic value in breast cancer. Previously, we showed a significant association between AURKA gene amplification and BRCA2 mutation in breast cancer. The aim of this study was to assess the prognostic impact of Aurora A overexpression on breast cancer arising in BRCA2 mutation carriers. Aurora(More)
In a recent article, Wang and colleagues reported the discovery of a mechanism by which CARM1 regulates the genomic localization of BAF155 (a SWI/SNF subunit involved in chromatin remodeling) through post-translational methylation at R1064 arginine residues. This modification leads to the relocalization of BAF155-containing SWI/SNF complexes to regions(More)