Olaf Brouwers

Learn More
Impaired nitric oxide (NO)-dependent vasorelaxation plays a key role in the development of diabetic vascular complications. We investigated the effect of hyperglycaemia on impaired vasoreactivity and a putative role therein of the AGE precursor methylglyoxal. The effects of high glucose and methylglyoxal on NO-dependent vasorelaxation in isolated rat(More)
The reactive advanced glycation end product (AGE) precursor methylglyoxal (MGO) and MGO-derived AGEs are associated with diabetic vascular complications and also with an increase in oxidative stress. Glyoxalase-I (GLO-I) transgenic rats were used to explore whether overexpression of this MGO detoxifying enzyme reduces levels of AGEs and oxidative stress in(More)
Methylglyoxal (MG) is an important precursor for AGEs. Normally, MG is detoxified by the glyoxalase (GLO) enzyme system (including component enzymes GLO1 and GLO2). Enhanced glycolytic metabolism in many cells during diabetes may overpower detoxification capacity and lead to AGE-related pathology. Using a transgenic rat model that overexpresses GLO1, we(More)
In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of(More)
Insulin resistance is characterized by an impaired responsiveness to the action of insulin at its multiple target organs. The accumulation of advanced glycation endproducts (AGEs) has been demonstrated in clinical settings of insulin resistance such as in diabetes, hypertension, and obesity. In this review we have focused on advanced glycation as a(More)
Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin(More)
AIMS Advanced glycation end-products (AGEs) and their precursors have been associated with the development of atherosclerosis. We recently discovered that glyoxalase 1 (GLO1), the major detoxifying enzyme for AGE precursors, is decreased in ruptured human plaques, and that levels of AGEs are higher in rupture-prone plaques. We here investigated whether(More)
OBJECTIVES Methylglyoxal is a major precursor in the formation of advanced glycation endproducts (AGEs), which are known to contribute to vascular complications such as hypertension and arterial stiffness. Methylglyoxal can be detoxified by glyoxalase 1 (GLO1). Because genetic variation in the GLO1 gene may alter the expression and/or the activity of GLO1,(More)
Increased formation of the reactive dicarbonyl compound methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) seems to be implicated in endothelial dysfunction and the development of diabetic vascular complications. MGO reacts with arginine residues in proteins to generate the major glycated adducts 5-hydro-5-methylimidazolone (MG-H1)(More)
Diabetes significantly increases the risk of heart failure. The increase in advanced glycation endproducts (AGEs) and oxidative stress have been associated with diabetic cardiomyopathy. We recently demonstrated that there is a direct link between AGEs and oxidative stress. Therefore, the aim of the current study was to investigate if a reduction of AGEs by(More)