Oksana Kunduzova

Learn More
AIMS Activation of cardiac fibroblasts and their differentiation into myofibroblasts is a key event in the progression of cardiac fibrosis that leads to end-stage heart failure. Apelin, an adipocyte-derived factor, exhibits a number of cardioprotective properties; however, whether apelin is involved in cardiac fibroblast activation and myofibroblast(More)
Adipose tissue secretes a variety of bioactive factors, which can regulate cardiomyocyte hypertrophy via reactive oxygen species (ROS). In the present study we investigated whether apelin affects ROS-dependent cardiac hypertrophy. In cardiomyocytes apelin inhibited the hypertrophic response to 5-HT and oxidative stress induced by 5-HT- or H(2)O(2) in a(More)
Oxidative stress is one of the factors involved in age-related impairment of cardiac function. In the present study, we investigated the role of the catecholamine-degrading enzyme monoamine oxidase (MAO) in H(2)O(2) production in the hearts of young, adult, and old rats. MAO-dependent H(2)O(2) production, measured by a chemiluminescence-based assay,(More)
BACKGROUND Dopamine, via activation of D1-like and D2-like receptors, plays an important role in the regulation of renal sodium excretion. Recently, we demonstrated that dopamine D2-like receptor agonist (bromocriptine) stimulates p44/42 mitogen-activated protein kinases (MAPKs) and Na+,K(+)ATPase (NKA) activity in proximal tubular epithelial cells. Since(More)
LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably(More)
BACKGROUND AND PURPOSE Mitochondria-derived oxidative stress is believed to be crucially involved in cardiac ischaemia reperfusion (I/R) injury, although currently no therapies exist that specifically target mitochondrial reactive oxygen species (ROS) production. The present study was designed to evaluate the potential effects of the structural analogues of(More)
BACKGROUND AND PURPOSE Apelin-13, an endogenous ligand for the apelin (APJ) receptor, behaves as a potent modulator of metabolic and cardiovascular disorders. Here, we examined the effects of apelin-13 on myocardial injury in a mouse model combining ischaemia/reperfusion (I/R) and obesity and explored their underlying mechanisms. EXPERIMENTAL APPROACH(More)
The increasing incidence of obesity accentuates the importance of identifying mechanisms and optimal therapeutic strategies for patients with heart failure (HF) in relation to obesity status. Here, we investigated the association between plasma level of apelin, an adipocyte-derived factor, and clinicopathological features of obese and non-obese patients(More)
Reactive oxygen species have been postulated to play a crucial role in the pathogenesis of renal ischemia-reperfusion injury. However, the intracellular sources of reactive oxygen species during ischemia-reperfusion are still unclear. In the present study, we examined whether catecholamine-degrading enzymes monoamine oxidases contribute to hydrogen peroxide(More)
BACKGROUND AND PURPOSE Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH Peptide G1 was synthesized by the(More)