Learn More
We present an algorithm to synthetically increase the resolution of a solitary depth image using only a generic database of local patches. Modern range sensors measure depths with non-Gaussian noise and at lower starting resolutions than typical visible-light cameras. While patch based approaches for upsampling intensity images continue to improve , this is(More)
Given a set of algorithms, which one(s) should you apply to, i) compute optical flow, or ii) perform feature matching? Would looking at the sequence in question help you decide? It is unclear if even a person with intimate knowledge of all the different algorithms and access to the sequence itself could predict which one to apply. Our hypothesis is that the(More)
We present a supervised learning-based method to estimate a per-pixel confidence for optical flow vectors. Regions of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not(More)
To train good supervised and semi-supervised object classifiers, it is critical that we not waste the time of the human experts who are providing the training labels. Existing active learning strategies can have uneven performance , being efficient on some datasets but wasteful on others , or inconsistent just between runs on the same dataset. We propose(More)
Typical approaches to classification treat class labels as disjoint. For each training example, it is assumed that there is only one class label that correctly describes it, and that all other labels are equally bad. We know however, that good and bad labels are too simplistic in many scenarios, hurting accuracy. In the realm of example dependent(More)
Compared to machines, humans are extremely good at classifying images into categories, especially when they possess prior knowledge of the categories at hand. If this prior information is not available, supervision in the form of teaching images is required. To learn categories more quickly, people should see important and representative images first,(More)
—Technology drives advances in science. Giving scientists access to more powerful tools for collecting and understanding data enables them to both ask and answer new kinds questions that were previously beyond their reach. Of these new tools at their disposal, machine learning offers the opportunity to understand and analyze data at unprecedented scales and(More)
There are many scenarios where we wish to imitate a specific author’s pen-on-paper handwriting style. Rendering new text in someone’s handwriting is difficult because natural handwriting is highly variable, yet follows both intentional and involuntary structure that makes a person’s style self-consistent. The variability means that naive(More)
—Learning based methods have shown very promising results for the task of depth estimation in single images. However, most existing approaches treat depth prediction as a supervised regression problem and as a result, require vast quantities of corresponding ground truth depth data for training. Just recording quality depth data in a range of environments(More)