Learn More
Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial(More)
Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth(More)
Previous studies of the oligoacyllysyl (OAK) series acyl-lysyl-lysyl-aminoacyl-lysine-amide, suggested their utility towards generating robust linear lipopeptide-like alternatives to antibiotics, although to date, none exhibited potent broad-spectrum bactericidal activity. To follow up on this premise, we produced a new analog (C14KKc12K) and investigated(More)
The global need to improve bacterial detection in liquid media has motivated multidisciplinary research efforts toward developing new approaches that overcome the shortcomings of traditional techniques. We recently proposed the use of oligomers of acylated lysyls (OAKs) in their resin-linked form (ROAKs) for the efficient, robust, and inexpensive filtration(More)
  • 1