Learn More
— This paper addresses designing finite dimensional linear time invariant (LTI) controllers for infinite dimensional LTI plants subject to H ∞ mixed-sensitivity performance objectives and convex constraints. Specifically, we focus on designing control systems for two classes of systems which are generally described by hyperbolic partial differential(More)
A critical challenge faced by sustainability science is to develop strategies to cope with highly uncertain social and ecological dynamics. This article explores the use of the robust control framework toward this end. After briefly outlining the robust control framework, we apply it to the traditional Gordon-Schaefer fishery model to explore fundamental(More)
In this paper, we examine the control of a scramjet-powered hypersonic vehicle with significant aeroelastic-propulsion interactions. Such vehicles are characterized by open loop unstable non-minimum phase dynamics, low frequency aero-elastic modes, significant coupling, and hard constraints (e.g. control surface deflection limits, thrust margin). Within(More)
Change in freshwater availability is arguably one of the most pressing issues associated with global change. Agriculture, which uses roughly 70% of the total global freshwater supply, figures prominently among sectors that may be adversely affected by global change. Of specific concern are small-scale agricultural systems that make up nearly 90% of all(More)
This paper describes the development of robust, multi-variable H∞ control systems for the conversion of the High-Speed Autonomous Rotorcraft Vehicle (HARVee), an experimental tilt-wing aircraft. Tilt-wing rotorcraft combine the high-speed cruise capabilities of a conventional airplane with the hovering capabilities of a helicopter by rotating their wings at(More)
This paper presents a framework for the study of policy implementation in highly uncertain natural resource systems in which uncertainty cannot be characterized by probability distributions. We apply the framework to parametric uncertainty in the traditional Gordon–Schaefer model of a fishery to illustrate how performance can be sacrificed (traded-off) for(More)
— This paper examines the design of digital com-pensators for high frequency switching dc-dc buck converters. While a high sampling frequency is desirable for digital controllers to minimize intersample effects and recover the performance of the analog compensator (e.g. regulation, robustness with respect input voltage and load fluctuations), finite(More)