Learn More
—Modern superscalar microprocessors need sizable register files to support a large number of in-flight instructions for exploiting instruction level parallelism (ILP). An alternative to building large register files is to use a smaller number of registers, but manage them more effectively. More efficient management of registers can also result in higher(More)
processor design because users expect failure-free operation throughout the product's lifetime. However, failure rates will likely grow as transistors and wires shrink and the supply voltage scales slowly, leading to higher current densities and temperatures. As a result, transistor and wire degradation will accelerate and shorten the product's lifetime.(More)
Modern superscalar microprocessors need sizable register files to support large number of in-flight instructions for exploiting ILP. An alternative to building large register files is to use smaller number of registers, but manage them more effectively. More efficient management of registers can also result in higher performance if the reduction of the(More)
DRAM latency continues to be a critical bottleneck for system performance. In this work, we develop a low-cost mechanism, called ChargeCache, that enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following(More)
Register file is a hot spot in contemporary microprocessors. As the number of instructions present in the processor at a given time increases, the size of the register file increases and it becomes a more important source of power dissipation inside the processor. Therefore it is important to pursue techniques that reduce the energy dissipation of register(More)
Register pressure in modern superscalar processors can be reduced by releasing registers early and by copying their contents to cheap back-up storage. This article quantifies the potential benefits of register occupancy reduction and shows that existing hardware-based schemes typically achieve only a small fraction of this potential. This is because they(More)
—Scaling supply voltage to near-threshold is a very effective approach in reducing the energy consumption of computer systems. However, executing below the safe operation margin of supply voltage introduces high number of persistent failures, especially in memory structures. Thus, it is essential to provide reliability schemes to tolerate these persistent(More)
A large percentage of computed results have fewer significant bits compared to the full width of a register. We exploit this fact to pack multiple results into a single physical register to reduce the pressure on the register file in a superscalar processor. Two schemes for dynamically packing multiple "narrow-width" results into partitions within a single(More)
Soft errors are an important challenge in contemporary microprocessors. Particle hits on the components of a processor are expected to create an increasing number of transient errors with each new microprocessor generation. In this paper we propose simple mechanisms that effectively reduce the vulnerability to soft errors In a processor. Our designs are(More)