Ognjen Arandjelovic

Learn More
In many automatic face recognition applications, a set of a person's face images is available rather than a single image. In this paper, we describe a novel method for face recognition using image sets. We propose a flexible, semi-parametric model for learning probability densities confined to highly non-linear but intrinsically low-dimensional manifolds.(More)
The objective of this work is to recognize all the frontal faces of a character in the closed world of a movie or situation comedy, given a small number of query faces. This is challenging because faces in a feature-length film are relatively uncontrolled with a wide variability of scale, pose, illumination, and expressions, and also may be partially(More)
Classification of coins is an important but laborious aspect of numismatics - the field that studies coins and currency. It is particularly challenging in the case of ancient coins. Due to the way they were manufactured, as well as wear from use and exposure to chemicals in the soil, the same ancient coin type can exhibit great variability in appearance. We(More)
In this paper we address the problem of classifying vector sets. We motivate and introduce a novel method based on comparisons between corresponding vector subspaces. In particular, there are two main areas of novelty: (i) we extend the concept of principal angles between linear subspaces to manifolds with arbitrary nonlinearities; (ii) it is demonstrated(More)
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user(More)
In this work we consider face recognition from face motion manifolds. An information-theoretic approach with Resistor-Average Distance (RAD) as a dissimilarity measure between distributions of face images is proposed. We introduce a kernel-based algorithm that retains the simplicity of the closed-form expression for the RAD between two normal distributions,(More)
We consider the problem of matching a face in a low resolution query video sequence against a set of higher quality gallery sequences. This problem is of interest in many applications, such as law enforcement. Our main contribution is an extension of the recently proposed Generic ShapeIllumination Manifold (gSIM) framework. Specifically, (i) we show how(More)
In this paper we address the problem of learning Gaussian Mixture Models (GMMs) incrementally. Unlike previous approaches which universally assume that new data comes in blocks representable by GMMs which are then merged with the current model estimate, our method works for the case when novel data points arrive oneby-one, while requiring little additional(More)
The problem of object recognition is of immense practical importance and potential, and the last decade has witnessed a number of breakthroughs in the state of the art. Most of the past object recognition work focuses on textured objects and local appearance descriptors extracted around salient points in an image. These methods fail in the matching of(More)
The aim of this paper is to automatically identify a Roman Imperial denarius from a single query photograph of its obverse and reverse. Such functionality has the potential to contribute greatly to various national schemes which encourage laymen to report their finds to local museums. Our work introduces a series of novelties: (i) this is the first paper(More)