Learn More
We prove that the scaling limit of loop-erased random walk in a simply connected domain D C is equal to the radial SLE 2 path. In particular, the limit exists and is conformally invariant. It follows that the scaling limit of the uniform spanning tree in a Jordan domain exists and is conformally invariant. Assuming that ∂D is a C 1 simple closed curve, the(More)
We show that when percolation produces infinitely many infinite clusters on a Cayley graph, one cannot distinguish the clusters from each other by any invariantly defined property. This implies that uniqueness of the infinite cluster is equivalent to non-decay of connectivity (a.k.a. long-range order). We then derive applications concerning uniqueness in(More)
We prove that every bounded Lipschitz function F on a subset Y of a length space We also prove the first general uniqueness results for ∆ ∞ u = g on bounded subsets of R n (when g is uniformly continuous and bounded away from 0), and analogous results for bounded length spaces. The proofs rely on a new game-theoretic description of u. Let u ε (x) be the(More)
This paper proves conjectures originating in the physics literature regarding the intersection exponents of Brownian motion in a half-plane. For instance, suppose that B and B ′ are two independent planar Brownian motions started from distinct points in a half-plane H. Then as t → ∞, P B[0, t] ∩ B ′ [0, t] = ∅ and B[0, t] ∪ B ′ [0, t] ⊂ H = t −5/3+o(1). The(More)