Learn More
It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary(More)
We prove that the scaling limit of loop-erased random walk in a simply connected domain D $ C is equal to the radial SLE2 path. In particular, the limit exists and is conformally invariant. It follows that the scaling limit of the uniform spanning tree in a Jordan domain exists and is conformally invariant. Assuming that ∂D is a C1 simple closed curve, the(More)
Explicit families of entire circle patterns with the combinatorics of the square grid are constructed, and it is shown that the collection of entire, locally univalent circle patterns on the sphere is innnite dimensional. In Particular, Doyle's conjecture is false in this setting. MM obius invariants of circle patterns are introduced, and turn out to be(More)
We study uniform spanning forest measures on infinite graphs, which are weak limits of uniform spanning tree measures from finite subgraphs. These limits can be taken with free (FSF) or wired (WSF) boundary conditions. Pemantle (1991) proved that the free and wired spanning forests coincide in Z d and that they give a single tree iff d 6 4. In the present(More)
Let 0 < a < b < ∞, and for each edge e of Zd let ωe = a or ωe = b, each with probability 1/2, independently. This induces a random metric distω on the vertices of Z d, called first passage percolation. We prove that for d > 1 the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C |v|/ log |v|, where C = C(a, b, d) is a(More)