Learn More
The time dependent-integrals of motion, linear in position and momentum operators, of a quantum system are extracted from Noether's theorem prescription by means of special time-dependent variations of coordinates. For the stationary case of the generalized two-dimensional harmonic oscillator, the time-independent integrals of motion are shown to correspond(More)
A symmetry of the parameter space of interacting boson models IBM-1 and IBM-2 is studied. The symmetry is associated with linear canonical transformations of boson operators, or, equivalently, with the existence of different realizations of the symmetry algebras of the models. The relevance of the parameter symmetry to physical observables is discussed.
A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.
  • 1