O. Muñiz-Pérez

  • Citations Per Year
Learn More
and Applied Analysis 3 Lemma 2.7 Goebel-Kirk . Let X be a Banach space. For each ε ∈ ε0 X , 2 , one has the equality δX 2 − 2δX ε 1 − ε/2. Lemma 2.8 Ullán . Let X be a Banach space. For each 0 ≤ ε2 ≤ ε1 < 2 the following inequality holds: δX ε1 − δX ε2 ≤ ε1 − ε2 / 2 − ε1 . Using these lemmas we obtain: Theorem 2.9. Let X be a Banach space which satisfies δX(More)
The purpose of this paper is to study the existence and uniqueness of fixed point for a class of nonlinear mappings defined on a real Banach space, which, among others, contains the class of separate contractive mappings, as well as to see that an important class of 1-set contractions and of pseudocontractions falls into this type of nonlinear mappings. As(More)
  • 1