O. E. Dial

Learn More
Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak(More)
Two level systems that can be reliably controlled and measured hold promise as qubits both for metrology and for quantum information science. Since a fluctuating environment limits the performance of qubits in both capacities, understanding environmental coupling and dynamics is key to improving qubit performance. We show measurements of the level splitting(More)
Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunnelling, yield measurements of the 'single-particle' density of states spectrum of a system. This density of states is proportional to the probability of(More)
The electron spin is a natural two-level system that allows a qubit to be encoded. When localized in a gate-defined quantum dot, the electron spin provides a promising platform for a future functional quantum computer. The essential ingredient of any quantum computer is entanglement—for the case of electron-spin qubits considered here—commonly achieved via(More)
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating(More)
  • O. E. Dial
  • 1970
During two recent years at MIT, I had a teletypewriter assigned to my use. The teletype gave me instant access to a large computer complex in which I had various sets of data stored. The teletype was located in a basement room which was generally dark except for the light focused over my teletype and small desk. It was always silent in that room except for(More)
Two level systems that can be reliably controlled and measured hold promise as qubits both for metrology and for quantum information science (QIS). Since a fluctuating environment limits the performance of qubits in both capacities, understanding the environmental coupling and dynamics is key to improving qubit performance. We show measurements of the level(More)