Oľga Østrup

Learn More
A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive role of histone marks for ZGA. In zebrafish, pre-ZGA(More)
Methods for normalization of RNA-sequencing gene expression data commonly assume equal total expression between compared samples. In contrast, scenarios of global gene expression shifts are many and increasing. Here we compare the performance of three normalization methods when polyA(+) RNA content fluctuates significantly during zebrafish early(More)
DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT)(More)
The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed at 0.5, 1, 2, 3, 4, 8, 12, and 16 h postactivation (hpa).(More)
In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological standard to that of embryos produced by IVF, parthenogenetic(More)
A characteristic of anamniote development is a relatively long period of embryonic cell divisions in the absence of on-going transcription. In zebrafish, this period lasts for 10 cell cycles, or ∼3-h postfertilization, after which zygotic genome activation (ZGA) takes place during the midblastula transition. How the embryo establishes transcriptional(More)
Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct(More)
The merging of the maternal and paternal genomes into a single pronucleus after fertilization is accompanied by a remarkable reconfiguration of chromatin in the newly formed zygote. The first stages of embryonic chromatin remodeling take place in the absence of ongoing transcription, during a species-specific developmental time-frame. Once(More)
Zebrafish embryos are transcriptionally silent until activation of the zygotic genome during the 10th cell cycle. Onset of transcription is followed by cellular and morphological changes involving cell speciation and gastrulation. Previous genome-wide surveys of transcriptional changes only assessed gene expression levels; however, recent studies have shown(More)
Treatment with cytoplasmic extracts from Xenopus laevis eggs represents a potential tool for universal cellular reprogramming. However, the biochemical activity and quality of the extract vary from batch to batch. This study aimed to evaluate three different extract batches prepared by the same method based on the colony formation of cells after extract(More)