Learn More
Several mutations are required for cancer development, and genome sequencing has revealed that many cancers, including breast cancer, have somatic mutation spectra dominated by C-to-T transitions. Most of these mutations occur at hydrolytically disfavoured non-methylated cytosines throughout the genome, and are sometimes clustered. Here we show that the DNA(More)
The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and(More)
Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of small hydrophobic compounds with diverse structures that specifically inhibit HIV-1 reverse transcriptase (RT). NNRTIs interact with HIV-1 RT by binding to a single site on the p66 subunit of the p66/p51 heterodimeric enzyme, termed the NNRTI-binding pocket (NNRTI-BP). This binding(More)
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis(More)
Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here, we report wide variation in the expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in the majority of ovarian cancer cell lines (three SDs above the mean of normal ovarian surface epithelial cells) and(More)
Understanding the molecular mechanisms of HIV-1 reverse transcriptase (RT) action and drug inhibition is essential for designing effective antiretroviral therapies. Although comparisons of the different crystal forms of RT give insights into the flexibility of different domains, a direct computational assessment of the effect of inhibitor binding on the(More)
UNLABELLED Several recent studies have converged upon the innate immune DNA cytosine deaminase APOBEC3B (A3B) as a significant source of genomic uracil lesions and mutagenesis in multiple human cancers, including those of the breast, head/neck, cervix, bladder, lung, ovary, and other tissues. A3B is upregulated in these tumor types relative to normal(More)
Methylation of cytosine at the 5-carbon position (5 mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts(More)
Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully(More)
Breast tumors often display extreme genetic heterogeneity characterized by hundreds of gross chromosomal aberrations and tens of thousands of somatic mutations. Tumor evolution is thought to be ongoing and driven by multiple mutagenic processes. A major outstanding question is whether primary tumors have preexisting mutations for therapy resistance or(More)