Nualpun Sirinupong

Learn More
The SmyD family represents a new class of chromatin regulators that is important in heart and skeletal muscle development. However, the critical questions regarding how they are regulated posttranslationally remain largely unknown. We previously suggested that the histone methyltransferase activity of SmyD1, a vital myogenic regulator, appears to be(More)
SmyD1 is a cardiac- and muscle-specific histone methyltransferase that methylates histone H3 at lysine 4 and regulates gene transcription in early heart development. The unique domain structure characterized by a "split" SET domain, a conserved MYND zinc finger, and a novel C-terminal domain (CTD) distinguishes SmyD1 from other SET domain containing(More)
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During(More)
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS), EC, is an essential enzyme in rubber biosynthesis in Hevea brasiliensis. We have isolated a new cDNA encoding HMGS in H. brasiliensis. The full-length hmgs2 consists of 1,916-bp and encodes a protein of 464 amino acids with a predicted molecular mass of 51.27 kDa and an isoelectric point of 6.02. In(More)
SmyD2 belongs to a new class of chromatin regulators that control gene expression in heart development and tumorigenesis. Besides methylation of histone H3 K4, SmyD2 can methylate non-histone targets including p53 and the retinoblastoma tumor suppressor. The methyltransferase activity of SmyD proteins has been proposed to be regulated by autoinhibition via(More)
Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic(More)
The formation of CXCR2-NHERF1-PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2-PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro(More)
NHERF1 is a PDZ adaptor protein that scaffolds the assembly of diverse signaling complexes and has been implicated in many cancers. However, little is known about the mechanism responsible for its scaffolding promiscuity or its ability to bind to multiple targets. Computational studies have indicated that PDZ promiscuity may be attributed to its(More)
Estrogen receptor (ER) signaling plays a pivotal role in many developmental processes and has been implicated in numerous diseases including cancers. We recently showed that direct ERα methylation by the multi-specificity histone lysine methyltransferase SMYD2 regulates estrogen signaling through repressing ERα-dependent transactivation. However, the(More)
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have(More)