Nozomu Takata

Learn More
Balanced organogenesis requires the orchestration of multiple cellular interactions to create the collective cell behaviours that progressively shape developing tissues. It is currently unclear how individual, localized parts are able to coordinate with each other to develop a whole organ shape. Here we report the dynamic, autonomous formation of the optic(More)
In this report, we demonstrate that an optic cup structure can form by self-organization in human ESC culture. The human ESC-derived optic cup is much larger than the mouse ESC-derived one, presumably reflecting the species differences. The neural retina in human ESC culture is thick and spontaneously curves in an apically convex manner, which is not seen(More)
We recently discovered an unexpected phenomenon of somatic cell reprogramming into pluripotent cells by exposure to sublethal stimuli, which we call stimulus-triggered acquisition of pluripotency (STAP). This reprogramming does not require nuclear transfer or genetic manipulation. Here we report that reprogrammed STAP cells, unlike embryonic stem (ES)(More)
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional(More)
Several critical errors have been found in ourArticle ( 10.1038/nature12968) and Letter, which led to an in-depth investigation by the RIKEN Institute. The RIKEN investigation committee has categorized someof the errors asmisconduct (see SupplementaryData 1 and SupplementaryData 2).Additional errors identified by the authors that are not(More)
Anterior pituitary is critical for endocrine systems. Its hormonal responses to positive and negative regulators are indispensable for homeostasis. For this reason, generating human anterior pituitary tissue that retains regulatory hormonal control in vitro is an important step for the development of cell transplantation therapy for pituitary diseases. Here(More)
In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable(More)
A large gap exists in our understanding of the course of differentiation from mesoderm to definitive hematopoietic stem cells (HSCs). Previously, we reported that Runx1(+) cells in embryonic day 7.5 (E7.5) embryos contribute to the hemogenic endothelium in the E10.5 aorta-gonad-mesonephros (AGM) region and HSCs in the adult bone marrow. Here, we show that(More)
We previously demonstrated that mouse embryonic stem cell (mESC)-derived retinal epithelium self-forms an optic cup-like structure. In the developing retina, the dorsal and ventral sides differ in terms of local gene expression and morphological features. This aspect has not yet been shown in vitro Here, we demonstrate that mESC-derived retinal tissue(More)
Embryonic stem (ES) cells have a remarkable capacity to self-organize complex, multi-layered optic cups in vitro via a culture technique called SFEBq. During both SFEBq and in vivo optic cup development, Rax (Rx) expressing neural retina epithelial (NRE) tissues utilize Fgf and Wnt/β-catenin signalling pathways to differentiate into neural retina (NR) and(More)