Notker Rösch

Learn More
Semi-local DFT approximations are well-known for their difficulty with describing the correct site preference for the adsorption of CO molecules on (111) surfaces of several late transition metals. To address this problem originating from a residual self-interaction in the CO LUMO, we present the DFT+Umol approach which generalizes the empirical DFT+U(More)
Locked nucleic acids (LNAs) exhibit a modified sugar fragment that is restrained to the C3'-endo conformation. LNA-containing duplexes are rather stable and have a more rigid structure than DNA duplexes, with a propensity for A-conformation of the double helix. To gain detailed insight into the local structure of LNA-modified DNA oligomers (as a foundation(More)
We present an improved scheme for constructing the border region within a hybrid quantum mechanics/molecular mechanics (QM/MM) embedded cluster approach for zeolites and covalent oxides that ensures proper modeling of adsorption complexes with QM regions of moderate size. The procedure employs a flexible orbital basis set on monovalent oxygen pseudoatoms at(More)
We have studied the solvation of uranyl, UO(2)(2+), and the reduced species UO(OH)(2+) and U(OH)(2)(2+) systematically using three levels of approximation: direct application of a continuum model (M1); explicit quantum-chemical treatment of the first hydration sphere (M2); a combined quantum-chemical/continuum model approach (M3). We have optimized(More)
As a first step toward modeling the interaction of dissolved actinide contaminants with mineral surfaces, we studied low-coverage adsorption of aqueous uranyl, UO2(2+), on the hydroxylated alpha-Al2O3(0001) surface. We carried out density functional periodic slab model calculations and modeled solvation effects by explicit aqua ligands. We explored the(More)
We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd(More)
Four controversies on the mechanism of the olefin epoxidation with Mimoun-type complexes, [MoO(O2)2(OPR3)], Herrmann-type complexes, [ReO(O2)2Me], and related inorganic peroxides have inspired industrial and academic researchers in the last three decades. First, is the oxygen transfer from the peroxo complex to the olefin concerted or stepwise? Second, does(More)
Experimental findings imply that edge sites (and other defects) on Pd nanocrystallites exposing mainly (111) facets in supported model catalysts are crucial for catalyst modification via deposition of CH(x) (x = 0-3) byproducts of methanol decomposition. To explore this problem computationally, we applied our recently developed approach to model(More)
Methanol steam re-forming, catalyzed by Pd/ZnO, is a potential hydrogen source for fuel cells, in particular in pollution-free vehicles. To contribute to the understanding of pertinent reaction mechanisms, density functional slab model studies on two competing decomposition pathways of adsorbed methoxide (CH(3)O) have been carried out, namely,(More)